Suppr超能文献

沿黏附表面的细胞膜排列:主动和被动细胞过程的作用

Cell membrane alignment along adhesive surfaces: contribution of active and passive cell processes.

作者信息

Pierres Anne, Eymeric Philippe, Baloche Emmanuelle, Touchard Dominique, Benoliel Anne-Marie, Bongrand Pierre

机构信息

INSERM U387, Laboratoire d'Immunologie, Hôpital de Ste-Marguerite, BP 29, 13274 Marseille Cedex 09, France.

出版信息

Biophys J. 2003 Mar;84(3):2058-70. doi: 10.1016/S0006-3495(03)75013-9.

Abstract

Cell adhesion requires nanometer scale membrane alignment to allow contact between adhesion receptors. Little quantitative information is presently available on this important biological process. Here we present an interference reflection microscopic study of the initial interaction between monocytic THP-1 cells and adhesive surfaces, with concomitant determination of cell deformability, using micropipette aspiration, and adhesiveness, using a laminar flow assay. We report that 1), during the first few minutes after contact, cells form irregular-shaped interaction zones reaching approximately 100 micro m(2) with a margin extension velocity of 0.01-0.02 micro m/s. This happens before the overall cell deformations usually defined as spreading. 2), These interference reflection microscopic-detected zones represent bona fide adhesion inasmuch as cells are not released by hydrodynamic forces. 3), Alignment is markedly decreased but not abolished by microfilament blockade with cytochalasin or even cell fixation with paraformaldehyde. 4), In contrast, exposing cells to hypotonic medium increased the rate of contact extension. 5), Contacts formed in presence of cytochalasin, after paraformaldehyde fixation or in hypotonic medium, were much more regular-shaped than controls and their extension matched cell deformability. 6), None of the aforementioned treatments altered adhesiveness to the surface. It is concluded that adhesive forces and passive membrane deformations are sufficient to generate initial cell alignment to adhesive surfaces, and this process is accelerated by spontaneous cytoskeletally-driven membrane motion.

摘要

细胞黏附需要纳米级别的膜排列,以使黏附受体之间能够接触。目前关于这一重要生物学过程的定量信息很少。在此,我们进行了一项干涉反射显微镜研究,观察单核细胞THP-1细胞与黏附表面之间的初始相互作用,并同时使用微量移液器吸液法测定细胞变形性,使用层流分析法测定细胞黏附性。我们报告如下:1)在接触后的最初几分钟内,细胞形成不规则形状的相互作用区域,面积约为100μm²,边缘延伸速度为0.01 - 0.02μm/s。这一过程发生在通常定义为铺展的整体细胞变形之前。2)这些通过干涉反射显微镜检测到的区域代表真正的黏附,因为细胞不会被流体动力释放。3)用细胞松弛素进行微丝阻断,甚至用多聚甲醛进行细胞固定后,排列明显减少但并未消除。4)相反,将细胞置于低渗培养基中会增加接触延伸的速率。5)在细胞松弛素存在下、多聚甲醛固定后或在低渗培养基中形成的接触区域,其形状比对照更规则,并且它们的延伸与细胞变形性相匹配。6)上述任何处理均未改变细胞对表面的黏附性。结论是,黏附力和被动膜变形足以使细胞与黏附表面产生初始排列,并且这一过程会因自发的细胞骨架驱动的膜运动而加速。

相似文献

2
How cells tiptoe on adhesive surfaces before sticking.细胞在黏附于表面之前是如何悄然移动的。
Biophys J. 2008 May 15;94(10):4114-22. doi: 10.1529/biophysj.107.125278. Epub 2008 Jan 30.
3
Topographical pattern dynamics in passive adhesion of cell membranes.细胞膜被动黏附中的拓扑模式动力学
Biophys J. 2004 Nov;87(5):3547-60. doi: 10.1529/biophysj.104.041475. Epub 2004 Aug 31.
4
Hydrodynamics of confined membranes.受限膜的流体动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011104. doi: 10.1103/PhysRevE.70.011104. Epub 2004 Jul 27.
5
Nucleation of membrane adhesions.膜粘连的成核作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021906. doi: 10.1103/PhysRevE.77.021906. Epub 2008 Feb 11.
7
Rheological analysis and measurement of neutrophil indentation.中性粒细胞压痕的流变学分析与测量。
Biophys J. 2004 Dec;87(6):4246-58. doi: 10.1529/biophysj.103.031765. Epub 2004 Sep 10.

引用本文的文献

9
Differential dynamics of platelet contact and spreading.血小板接触和扩展的差异动力学。
Biophys J. 2012 Feb 8;102(3):472-82. doi: 10.1016/j.bpj.2011.10.056. Epub 2012 Feb 7.

本文引用的文献

7
Cell control by membrane-cytoskeleton adhesion.通过膜-细胞骨架黏附实现的细胞控制
Nat Rev Mol Cell Biol. 2001 May;2(5):392-6. doi: 10.1038/35073095.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验