Suppr超能文献

沿黏附表面的细胞膜排列:主动和被动细胞过程的作用

Cell membrane alignment along adhesive surfaces: contribution of active and passive cell processes.

作者信息

Pierres Anne, Eymeric Philippe, Baloche Emmanuelle, Touchard Dominique, Benoliel Anne-Marie, Bongrand Pierre

机构信息

INSERM U387, Laboratoire d'Immunologie, Hôpital de Ste-Marguerite, BP 29, 13274 Marseille Cedex 09, France.

出版信息

Biophys J. 2003 Mar;84(3):2058-70. doi: 10.1016/S0006-3495(03)75013-9.

Abstract

Cell adhesion requires nanometer scale membrane alignment to allow contact between adhesion receptors. Little quantitative information is presently available on this important biological process. Here we present an interference reflection microscopic study of the initial interaction between monocytic THP-1 cells and adhesive surfaces, with concomitant determination of cell deformability, using micropipette aspiration, and adhesiveness, using a laminar flow assay. We report that 1), during the first few minutes after contact, cells form irregular-shaped interaction zones reaching approximately 100 micro m(2) with a margin extension velocity of 0.01-0.02 micro m/s. This happens before the overall cell deformations usually defined as spreading. 2), These interference reflection microscopic-detected zones represent bona fide adhesion inasmuch as cells are not released by hydrodynamic forces. 3), Alignment is markedly decreased but not abolished by microfilament blockade with cytochalasin or even cell fixation with paraformaldehyde. 4), In contrast, exposing cells to hypotonic medium increased the rate of contact extension. 5), Contacts formed in presence of cytochalasin, after paraformaldehyde fixation or in hypotonic medium, were much more regular-shaped than controls and their extension matched cell deformability. 6), None of the aforementioned treatments altered adhesiveness to the surface. It is concluded that adhesive forces and passive membrane deformations are sufficient to generate initial cell alignment to adhesive surfaces, and this process is accelerated by spontaneous cytoskeletally-driven membrane motion.

摘要

细胞黏附需要纳米级别的膜排列,以使黏附受体之间能够接触。目前关于这一重要生物学过程的定量信息很少。在此,我们进行了一项干涉反射显微镜研究,观察单核细胞THP-1细胞与黏附表面之间的初始相互作用,并同时使用微量移液器吸液法测定细胞变形性,使用层流分析法测定细胞黏附性。我们报告如下:1)在接触后的最初几分钟内,细胞形成不规则形状的相互作用区域,面积约为100μm²,边缘延伸速度为0.01 - 0.02μm/s。这一过程发生在通常定义为铺展的整体细胞变形之前。2)这些通过干涉反射显微镜检测到的区域代表真正的黏附,因为细胞不会被流体动力释放。3)用细胞松弛素进行微丝阻断,甚至用多聚甲醛进行细胞固定后,排列明显减少但并未消除。4)相反,将细胞置于低渗培养基中会增加接触延伸的速率。5)在细胞松弛素存在下、多聚甲醛固定后或在低渗培养基中形成的接触区域,其形状比对照更规则,并且它们的延伸与细胞变形性相匹配。6)上述任何处理均未改变细胞对表面的黏附性。结论是,黏附力和被动膜变形足以使细胞与黏附表面产生初始排列,并且这一过程会因自发的细胞骨架驱动的膜运动而加速。

相似文献

1
Cell membrane alignment along adhesive surfaces: contribution of active and passive cell processes.
Biophys J. 2003 Mar;84(3):2058-70. doi: 10.1016/S0006-3495(03)75013-9.
2
How cells tiptoe on adhesive surfaces before sticking.
Biophys J. 2008 May 15;94(10):4114-22. doi: 10.1529/biophysj.107.125278. Epub 2008 Jan 30.
3
Topographical pattern dynamics in passive adhesion of cell membranes.
Biophys J. 2004 Nov;87(5):3547-60. doi: 10.1529/biophysj.104.041475. Epub 2004 Aug 31.
4
Hydrodynamics of confined membranes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011104. doi: 10.1103/PhysRevE.70.011104. Epub 2004 Jul 27.
5
Nucleation of membrane adhesions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021906. doi: 10.1103/PhysRevE.77.021906. Epub 2008 Feb 11.
6
Enforced unbinding of biomembranes whose mutual adhesion is mediated by a specific interaction.
Eur Biophys J. 2003 Feb;31(8):637-42. doi: 10.1007/s00249-002-0257-8. Epub 2002 Oct 24.
7
Rheological analysis and measurement of neutrophil indentation.
Biophys J. 2004 Dec;87(6):4246-58. doi: 10.1529/biophysj.103.031765. Epub 2004 Sep 10.
8
Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers.
Biophys J. 2003 Feb;84(2 Pt 1):1344-51. doi: 10.1016/S0006-3495(03)74950-9.
9
Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing.
Biophys J. 2003 Oct;85(4):2746-59. doi: 10.1016/S0006-3495(03)74697-9.

引用本文的文献

1
CD8 Co-Receptor Enhances T-Cell Activation without Any Effect on Initial Attachment.
Cells. 2021 Feb 18;10(2):429. doi: 10.3390/cells10020429.
3
Use of TIRF to Monitor T-Lymphocyte Membrane Dynamics with Submicrometer and Subsecond Resolution.
Cell Mol Bioeng. 2015;8(1):178-186. doi: 10.1007/s12195-014-0361-8. Epub 2014 Oct 22.
4
T lymphocytes need less than 3 min to discriminate between peptide MHCs with similar TCR-binding parameters.
Eur J Immunol. 2015 Jun;45(6):1635-42. doi: 10.1002/eji.201445214. Epub 2015 Apr 21.
5
Amyloid precursor protein is an autonomous growth cone adhesion molecule engaged in contact guidance.
PLoS One. 2013 May 14;8(5):e64521. doi: 10.1371/journal.pone.0064521. Print 2013.
6
The influence of inhomogeneous adhesion on the detachment dynamics of adhering cells.
Eur Biophys J. 2013 Jun;42(6):419-26. doi: 10.1007/s00249-013-0891-3. Epub 2013 Feb 9.
7
The role of fibrinogen spacing and patch size on platelet adhesion under flow.
Acta Biomater. 2012 Nov;8(11):4080-91. doi: 10.1016/j.actbio.2012.07.013. Epub 2012 Jul 20.
8
Membrane dynamics correlate with formation of signaling clusters during cell spreading.
Biophys J. 2012 Apr 4;102(7):1524-33. doi: 10.1016/j.bpj.2012.02.015. Epub 2012 Apr 3.
9
Differential dynamics of platelet contact and spreading.
Biophys J. 2012 Feb 8;102(3):472-82. doi: 10.1016/j.bpj.2011.10.056. Epub 2012 Feb 7.
10
Initial dynamics of cell spreading are governed by dissipation in the actin cortex.
Biophys J. 2011 Aug 3;101(3):611-21. doi: 10.1016/j.bpj.2011.06.030.

本文引用的文献

1
THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY.
J Cell Biol. 1964 Feb;20(2):199-215. doi: 10.1083/jcb.20.2.199.
2
Dissecting streptavidin-biotin interaction with a laminar flow chamber.
Biophys J. 2002 Jun;82(6):3214-23. doi: 10.1016/S0006-3495(02)75664-6.
3
The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes.
Biophys J. 2002 Feb;82(2):720-7. doi: 10.1016/S0006-3495(02)75434-9.
4
p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability.
J Clin Invest. 2001 Nov;108(10):1495-504. doi: 10.1172/JCI12190.
5
The immunological synapse and CD28-CD80 interactions.
Nat Immunol. 2001 Dec;2(12):1159-66. doi: 10.1038/ni737.
6
Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system.
Biophys J. 2001 Nov;81(5):2743-51. doi: 10.1016/S0006-3495(01)75917-6.
7
Cell control by membrane-cytoskeleton adhesion.
Nat Rev Mol Cell Biol. 2001 May;2(5):392-6. doi: 10.1038/35073095.
9
Inhibition of the calcium-dependent tyrosine kinase (CADTK) blocks monocyte spreading and motility.
J Biol Chem. 2001 Feb 2;276(5):3536-42. doi: 10.1074/jbc.M006916200. Epub 2000 Nov 2.
10
Glycocalyx modulation is a physiological means of regulating cell adhesion.
J Cell Sci. 2000 May;113 ( Pt 9):1589-600. doi: 10.1242/jcs.113.9.1589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验