Lundbaek J A, Andersen O S, Werge T, Nielsen C
Institute of Biological Psychiatry, Sct. Hans Hospital, Roskilde, DK-4000, Denmark.
Biophys J. 2003 Mar;84(3):2080-9. doi: 10.1016/S0006-3495(03)75015-2.
The mechanism(s) underlying the sorting of integral membrane proteins between the Golgi complex and the plasma membrane remain uncertain because no specific Golgi retention signal has been found. Moreover one can alter a protein's eventual localization simply by altering the length of its transmembrane domain (TMD). M. S. Bretscher and S. Munro (SCIENCE: 261:1280-1281, 1993) therefore proposed a physical sorting mechanism based on the hydrophobic match between the proteins' TMD and the bilayer thickness, in which cholesterol would regulate protein sorting by increasing the lipid bilayer thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility of a cholesterol-dependent sorting process using the theory of elastic liquid crystal deformations. We show that the distribution of proteins between cholesterol-enriched and cholesterol-poor bilayer domains can be regulated by cholesterol-induced changes in the bilayer physical properties. Changes in bilayer thickness per se, however, have only a modest effect on sorting; the major effect arises because cholesterol changes also the bilayer material properties, which augments the energetic penalty for incorporating short TMDs into cholesterol-enriched domains. We conclude that cholesterol-induced changes in the bilayer physical properties allow for effective and accurate sorting which will be important generally for protein partitioning between different membrane domains.
由于尚未发现特定的高尔基体保留信号,整合膜蛋白在高尔基体复合体和质膜之间进行分选的机制仍不明确。此外,仅仅通过改变蛋白质跨膜结构域(TMD)的长度,就可以改变其最终定位。因此,M. S. 布雷彻和S. 芒罗(《科学》:261:1280 - 1281,1993年)提出了一种基于蛋白质TMD与双层膜厚度之间疏水匹配的物理分选机制,其中胆固醇会通过增加脂质双层厚度来调节蛋白质分选。在这个模型中,具有短TMD的高尔基体蛋白将被排除在富含胆固醇的结构域(脂筏)之外,这些脂筏会被整合到运往质膜的运输小泡中。尽管这个模型很有吸引力,但仍未得到证实。因此,我们使用弹性液晶变形理论评估了胆固醇依赖性分选过程的能量可行性。我们表明,富含胆固醇和缺乏胆固醇的双层膜结构域之间的蛋白质分布可以通过胆固醇诱导的双层膜物理性质变化来调节。然而,双层膜厚度本身的变化对分选的影响不大;主要影响来自于胆固醇的变化也改变了双层膜的材料性质,这增加了将短TMD整合到富含胆固醇的结构域中的能量代价。我们得出结论,胆固醇诱导的双层膜物理性质变化允许进行有效和准确的分选,这对于蛋白质在不同膜结构域之间的分配通常很重要。