Nielsen C, Goulian M, Andersen O S
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021, USA.
Biophys J. 1998 Apr;74(4):1966-83. doi: 10.1016/S0006-3495(98)77904-4.
The material properties of lipid bilayers can affect membrane protein function whenever conformational changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein's hydrophobic exterior surface and the average thickness of the bilayer's hydrophobic core, using a (liquid-crystal) elastic model of bilayer deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion, splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers. When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A, an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein conformation) 10-fold due to the elastic properties of the bilayer.
只要跨膜蛋白的构象变化扰乱周围双层膜的结构,脂质双层膜的材料特性就会影响膜蛋白的功能。蛋白质与双层膜之间的这种耦合源于蛋白质与双层膜之间的疏水相互作用。我们使用双层膜变形的(液晶)弹性模型分析与疏水错配相关的自由能成本,即蛋白质疏水外表面长度与双层膜疏水核心平均厚度之间的差异。变形的自由能被描述为三种贡献的总和:压缩 - 膨胀、展曲 - 畸变和表面张力。在评估能量分量之间的相互依赖性时,一个模量会使另一个模量重整化:例如,压缩 - 膨胀模量的变化不仅会影响压缩 - 膨胀能量,还会影响展曲 - 畸变能量。在无溶剂的薄双层膜中,表面张力贡献总是可以忽略不计。在评估每单位距离(远离内含物)的能量时,展曲 - 畸变分量在靠近双层膜/内含物边界处占主导,而压缩 - 膨胀分量在远离边界处更为突出。尽管存在这种复杂性,但在许多情况下,双层膜变形能量可以用线性弹簧形式来描述。结果表明,对于嵌入初始疏水错配仅为1埃的膜中的蛋白质,由于双层膜的弹性特性,疏水错配增加到1.3埃可使玻尔兹曼因子(蛋白质构象的平衡分布)增加10倍。