Muraki Takamichi, Taki Masami, Hasegawa Yoshie, Iwaki Hiroaki, Lau Peter C K
Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan.
Appl Environ Microbiol. 2003 Mar;69(3):1564-72. doi: 10.1128/AEM.69.3.1564-1572.2003.
The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, respectively. The NbaC enzyme carries out the oxidation of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate-6-semialdehyde, while the NbaD enzyme catalyzes the decarboxylation of the latter compound to 2-aminomuconate-6-semialdehyde. The NbaC and NbaD proteins were overexpressed in Escherichia coli and characterized. The substrate specificity of the 23.8-kDa NbaC protein was found to be restricted to 3-hydroxyanthranilate. In E. coli, this enzyme oxidizes 3-hydroxyanthranilate with a specific activity of 8 U/mg of protein. Site-directed mutagenesis experiments revealed the essential role of two conserved histidine residues (His52 and His96) in the NbaC sequence. The NbaC activity is also dependent on the presence of Fe(2+) but is inhibited by other metal ions, such as Zn(2+), Cu(2+), and Cd(2+). The NbaD protein was overproduced as a 38.7-kDa protein, and its specific activity towards 2-amino-3-carboxymuconate-6-semialdehyde was 195 U/mg of protein. Further processing of 2-aminomuconate-6-semialdehyde to pyruvic acid and acetyl coenzyme A was predicted to proceed via the activities of NbaE, NbaF, NbaG, NbaH, NbaI, and NbaJ. The predicted amino acid sequences of these proteins are highly homologous to those of the corresponding proteins involved in the metabolism of 2-aminophenol (e.g., AmnCDEFGH in Pseudomonas sp. strain AP-3). The NbaR-encoding gene is predicted to have a regulatory function of the LysR family type. The function of the product of the small open reading frame, NbaX, like the homologous sequences in the nitrobenzene or 2-aminophenol metabolic pathway, remains elusive.
荧光假单胞菌KU-7的2-硝基苯甲酸降解途径通过一种新的3-羟基邻氨基苯甲酸中间体进行。在本研究中,我们克隆并测序了菌株KU-7的一个19-kb DNA位点,该位点包含3-羟基邻氨基苯甲酸间位裂解途径基因。该基因簇命名为nbaEXHJIGFCDR,紧密排列且方向相同。发现NbaC和NbaD基因产物分别是真核生物3-羟基邻氨基苯甲酸3,4-双加氧酶和2-氨基-3-羧基粘康酸-6-半醛脱羧酶的新同源物。NbaC酶将3-羟基邻氨基苯甲酸氧化为2-氨基-3-羧基粘康酸-6-半醛,而NbaD酶催化后一种化合物脱羧生成2-氨基粘康酸-6-半醛。NbaC和NbaD蛋白在大肠杆菌中过量表达并进行了表征。发现23.8-kDa的NbaC蛋白的底物特异性仅限于3-羟基邻氨基苯甲酸。在大肠杆菌中,该酶氧化3-羟基邻氨基苯甲酸的比活性为8 U/mg蛋白。定点诱变实验揭示了NbaC序列中两个保守组氨酸残基(His52和His96)的重要作用。NbaC活性也依赖于Fe(2+)的存在,但受到其他金属离子如Zn(2+)、Cu(2+)和Cd(2+)的抑制。NbaD蛋白作为一种38.7-kDa的蛋白过量表达,其对2-氨基-3-羧基粘康酸-6-半醛的比活性为每毫克蛋白195 U。预计2-氨基粘康酸-6-半醛进一步加工成丙酮酸和乙酰辅酶A是通过NbaE、NbaF、NbaG、NbaH、NbaI和NbaJ的活性进行的。这些蛋白的预测氨基酸序列与参与2-氨基酚代谢的相应蛋白(如假单胞菌属菌株AP-3中的AmnCDEFGH)高度同源。预测编码NbaR的基因具有LysR家族类型的调节功能。小开放阅读框NbaX的产物的功能,与硝基苯或2-氨基酚代谢途径中的同源序列一样,仍然不清楚。