Suppr超能文献

荧光假单胞菌菌株KU-7的2-硝基苯甲酸降解途径中真核生物3-羟基邻氨基苯甲酸3,4-双加氧酶和2-氨基-3-羧基粘康酸-6-半醛脱羧酶的原核生物同源物。

Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7.

作者信息

Muraki Takamichi, Taki Masami, Hasegawa Yoshie, Iwaki Hiroaki, Lau Peter C K

机构信息

Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan.

出版信息

Appl Environ Microbiol. 2003 Mar;69(3):1564-72. doi: 10.1128/AEM.69.3.1564-1572.2003.

Abstract

The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, respectively. The NbaC enzyme carries out the oxidation of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate-6-semialdehyde, while the NbaD enzyme catalyzes the decarboxylation of the latter compound to 2-aminomuconate-6-semialdehyde. The NbaC and NbaD proteins were overexpressed in Escherichia coli and characterized. The substrate specificity of the 23.8-kDa NbaC protein was found to be restricted to 3-hydroxyanthranilate. In E. coli, this enzyme oxidizes 3-hydroxyanthranilate with a specific activity of 8 U/mg of protein. Site-directed mutagenesis experiments revealed the essential role of two conserved histidine residues (His52 and His96) in the NbaC sequence. The NbaC activity is also dependent on the presence of Fe(2+) but is inhibited by other metal ions, such as Zn(2+), Cu(2+), and Cd(2+). The NbaD protein was overproduced as a 38.7-kDa protein, and its specific activity towards 2-amino-3-carboxymuconate-6-semialdehyde was 195 U/mg of protein. Further processing of 2-aminomuconate-6-semialdehyde to pyruvic acid and acetyl coenzyme A was predicted to proceed via the activities of NbaE, NbaF, NbaG, NbaH, NbaI, and NbaJ. The predicted amino acid sequences of these proteins are highly homologous to those of the corresponding proteins involved in the metabolism of 2-aminophenol (e.g., AmnCDEFGH in Pseudomonas sp. strain AP-3). The NbaR-encoding gene is predicted to have a regulatory function of the LysR family type. The function of the product of the small open reading frame, NbaX, like the homologous sequences in the nitrobenzene or 2-aminophenol metabolic pathway, remains elusive.

摘要

荧光假单胞菌KU-7的2-硝基苯甲酸降解途径通过一种新的3-羟基邻氨基苯甲酸中间体进行。在本研究中,我们克隆并测序了菌株KU-7的一个19-kb DNA位点,该位点包含3-羟基邻氨基苯甲酸间位裂解途径基因。该基因簇命名为nbaEXHJIGFCDR,紧密排列且方向相同。发现NbaC和NbaD基因产物分别是真核生物3-羟基邻氨基苯甲酸3,4-双加氧酶和2-氨基-3-羧基粘康酸-6-半醛脱羧酶的新同源物。NbaC酶将3-羟基邻氨基苯甲酸氧化为2-氨基-3-羧基粘康酸-6-半醛,而NbaD酶催化后一种化合物脱羧生成2-氨基粘康酸-6-半醛。NbaC和NbaD蛋白在大肠杆菌中过量表达并进行了表征。发现23.8-kDa的NbaC蛋白的底物特异性仅限于3-羟基邻氨基苯甲酸。在大肠杆菌中,该酶氧化3-羟基邻氨基苯甲酸的比活性为8 U/mg蛋白。定点诱变实验揭示了NbaC序列中两个保守组氨酸残基(His52和His96)的重要作用。NbaC活性也依赖于Fe(2+)的存在,但受到其他金属离子如Zn(2+)、Cu(2+)和Cd(2+)的抑制。NbaD蛋白作为一种38.7-kDa的蛋白过量表达,其对2-氨基-3-羧基粘康酸-6-半醛的比活性为每毫克蛋白195 U。预计2-氨基粘康酸-6-半醛进一步加工成丙酮酸和乙酰辅酶A是通过NbaE、NbaF、NbaG、NbaH、NbaI和NbaJ的活性进行的。这些蛋白的预测氨基酸序列与参与2-氨基酚代谢的相应蛋白(如假单胞菌属菌株AP-3中的AmnCDEFGH)高度同源。预测编码NbaR的基因具有LysR家族类型的调节功能。小开放阅读框NbaX的产物的功能,与硝基苯或2-氨基酚代谢途径中的同源序列一样,仍然不清楚。

相似文献

2
A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7.
FEMS Microbiol Lett. 2000 Sep 15;190(2):185-90. doi: 10.1111/j.1574-6968.2000.tb09284.x.
3
Degradation of 2-nitrobenzoate by Burkholderia terrae strain KU-15.
Biosci Biotechnol Biochem. 2007 Jan;71(1):145-51. doi: 10.1271/bbb.60419. Epub 2007 Jan 7.
7
Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates.
FEMS Microbiol Lett. 2003 Dec 12;229(2):231-6. doi: 10.1016/S0378-1097(03)00844-9.

引用本文的文献

1
Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins.
Adv Microb Physiol. 2023;83:117-179. doi: 10.1016/bs.ampbs.2023.04.001. Epub 2023 Apr 29.
2
Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan.
Metabolites. 2023 Mar 30;13(4):500. doi: 10.3390/metabo13040500.
3
Charge Maintenance during Catalysis in Nonheme Iron Oxygenases.
ACS Catal. 2022 May 20;12(10):6191-6208. doi: 10.1021/acscatal.1c04770. Epub 2022 May 10.
4
Postdiagenetic Changes in Kerogen Properties and Type by Bacterial Oxidation and Dehydrogenation.
Molecules. 2022 Apr 8;27(8):2408. doi: 10.3390/molecules27082408.
6
Construction of an Alternative NAD De Novo Biosynthesis Pathway.
Adv Sci (Weinh). 2021 Mar 1;8(9):2004632. doi: 10.1002/advs.202004632. eCollection 2021 May.
7
Diflunisal Derivatives as Modulators of ACMS Decarboxylase Targeting the Tryptophan-Kynurenine Pathway.
J Med Chem. 2021 Jan 14;64(1):797-811. doi: 10.1021/acs.jmedchem.0c01762. Epub 2020 Dec 28.
8
Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19720-19730. doi: 10.1073/pnas.2005327117. Epub 2020 Jul 30.
9
RidA Proteins Protect against Metabolic Damage by Reactive Intermediates.
Microbiol Mol Biol Rev. 2020 Jul 15;84(3). doi: 10.1128/MMBR.00024-20. Print 2020 Aug 19.
10
Quaternary structure of α-amino-β-carboxymuconate-ϵ-semialdehyde decarboxylase (ACMSD) controls its activity.
J Biol Chem. 2019 Jul 26;294(30):11609-11621. doi: 10.1074/jbc.RA119.009035. Epub 2019 Jun 12.

本文引用的文献

1
Preparation of genomic DNA from bacteria.
Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4. doi: 10.1002/0471142727.mb0204s56.
2
A rapid and precise method for the determination of urea.
J Clin Pathol. 1960 Mar;13(2):156-9. doi: 10.1136/jcp.13.2.156.
3
Biodegradation, biotransformation, and biocatalysis (b3).
Appl Environ Microbiol. 2002 Oct;68(10):4699-709. doi: 10.1128/AEM.68.10.4699-4709.2002.
6
Prokaryotic diversity--magnitude, dynamics, and controlling factors.
Science. 2002 May 10;296(5570):1064-6. doi: 10.1126/science.1071698.
7
Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase.
Biochem J. 2002 Feb 1;361(Pt 3):567-75. doi: 10.1042/0264-6021:3610567.
8
The Pfam protein families database.
Nucleic Acids Res. 2002 Jan 1;30(1):276-80. doi: 10.1093/nar/30.1.276.
9
The PROSITE database, its status in 2002.
Nucleic Acids Res. 2002 Jan 1;30(1):235-8. doi: 10.1093/nar/30.1.235.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验