Suppr超能文献

基于模糊逻辑的肿瘤标志物谱提高了小细胞肺癌患者病情进展检测的灵敏度。

Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients.

作者信息

Schneider J, Peltri G, Bitterlich N, Philipp M, Velcovsky H G, Morr H, Katz N, Eigenbrodt E

机构信息

Institut und Poliklinik für Arbeits- und Sozialmedizin der Justus-Liebig-Universität, Aulweg 129/III, 35385 Giessen, Germany.

出版信息

Clin Exp Med. 2003 Feb;2(4):185-91. doi: 10.1007/s102380300005.

Abstract

Tumor markers were used for disease monitoring in small-cell lung cancer patients. The aim of this study was to improve diagnostic efficiency in the detection of tumor progression in small-cell lung cancer patients by using fuzzy logic modeling in combination with a tumor marker panel (NSE, ProGRP, Tumor M2-PK, CYFRA 21-1, and CEA). Thirty-three consecutive small-cell lung cancer patients were included in a prospective study. The changes in blood levels of tumor markers and their analysis by fuzzy logic modeling were compared with the clinical evaluation of response versus non-response to therapy. Clinical monitoring was performed according to the standard criteria of the WHO. Tumor M2-PK was measured in plasma with an ELISA, all other markers were measured in sera. At 90% specificity, clinically detected tumor progression was found by the best single marker, NSE, in 32% of all cases. A fuzzy logic rule-based system employing a tumor marker panel increased the sensitivity significantly (P>0.0001) in small-cell carcinomas to 67% with the threemarker combination NSE/ProGRP/Tumor M2-PK and to 56% with the best two-marker combination ProGRP/Tumor M2-PK, respectively. An improvement of sensitivity was also observed using the two-marker combination of ProGRP/NSE (sensitivity 49%) or NSE/Tumor M2-PK (sensitivity 52%). The fuzzy classifier was able to detect a higher rate of progression in small-cell lung cancer patients compared with the multiple logistic regression analysis using the marker combination NSE/ProGRP/Tumor M2-PK (sensitivity 44%; AUC=0.76). With the fuzzy logic method and different tumor marker panels (NSE, ProGRP and Tumor M2-PK), a new diagnostic tool for the detection of progression in patients with small-cell lung cancer is available.

摘要

肿瘤标志物用于小细胞肺癌患者的疾病监测。本研究的目的是通过将模糊逻辑建模与肿瘤标志物组合(神经元特异性烯醇化酶[NSE]、胃泌素释放肽前体[ProGRP]、肿瘤型M2丙酮酸激酶[Tumor M2-PK]、细胞角蛋白19片段[CYFRA 21-1]和癌胚抗原[CEA])相结合,提高小细胞肺癌患者肿瘤进展检测的诊断效率。33例连续的小细胞肺癌患者纳入一项前瞻性研究。将肿瘤标志物血水平的变化及其通过模糊逻辑建模的分析与治疗反应与否的临床评估进行比较。根据世界卫生组织的标准标准进行临床监测。用酶联免疫吸附测定法(ELISA)检测血浆中的肿瘤型M2丙酮酸激酶,所有其他标志物检测血清中的含量。在90%的特异性水平下,所有病例中最佳单一标志物NSE在32%的病例中检测到临床检测的肿瘤进展。基于模糊逻辑规则的系统采用肿瘤标志物组合,在小细胞癌中显著提高了敏感性(P>0.0001),NSE/ProGRP/Tumor M2-PK三标志物组合的敏感性提高到67%,最佳双标志物组合ProGRP/Tumor M2-PK的敏感性提高到56%。使用ProGRP/NSE双标志物组合(敏感性49%)或NSE/Tumor M2-PK双标志物组合(敏感性52%)也观察到敏感性的提高。与使用标志物组合NSE/ProGRP/Tumor M2-PK的多元逻辑回归分析相比(敏感性44%;曲线下面积[AUC]=0.76),模糊分类器能够检测到更高比例的小细胞肺癌患者的进展。通过模糊逻辑方法和不同的肿瘤标志物组合(NSE、ProGRP和Tumor M2-PK),可获得一种用于检测小细胞肺癌患者进展的新诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验