Suppr超能文献

一种使用标记物面板的模糊分类器,用于检测石棉沉着病患者中的肺癌。

A fuzzy-classifier using a marker panel for the detection of lung cancers in asbestosis patients.

作者信息

Schneider Joachim, Bitterlich Norman, Kotschy-Lang Nicola, Raab Wolfgang, Woitowitz Hans-Joachim

机构信息

Institut und Poliklinik für Arbeits- und Sozialmedizin der Justus-Liebig-Universität, Aulweg 129/III, D-35385 Giessen, Germany.

出版信息

Anticancer Res. 2007 Jul-Aug;27(4A):1869-77.

Abstract

BACKGROUND

The aim of this study was to evaluate the diagnostic power of a fuzzy classifier and a marker panel (CYFRA 21-1, NSE, CRP) for the detection of lung cancers in comparison to asbestosis patients at high-risk of developing lung cancer.

PATIENTS AND METHODS

A panel of four tumour markers, i.e. CEA, CYFRA 21-1, NSE, SCC and CRP, was measured in newly diagnosed lung cancer patients of different histological types and stages in comparison to asbestosis patients. In this prospective study, a fuzzy classifier was generated with the data of 216 primary lung cancer patients and 76 patients suffering from asbestosis. The patients and controls were recruited in the clinics of the University in Giessen.

RESULTS

At 95%-specificity, it was possible with this tool to detect non-small cell lung cancers in 70% at stage I (n = 30), in 95% at stage II (n = 22), in 98% at stage III (n = 56), in 92% at stage IV (n = 50) and small cell lung cancers with limited disease status (n = 21) in 90.7% and with extensive disease status (n = 37) in 97.3%. In contrast, single markers had a detection rate significantly far below these. The application of the classifier was examined on an independent collective of 38 non-small cell lung cancers and 76 asbestosis patients. The latter underwent stationary rehabilitation in the clinics for occupational diseases in Bad Reichenhall or Falkenstein. The fuzzy classifier showed correct negative classification in 75 out of the 76 cancer-free asbestosis patients, which confirmed a specificity of 97.4%. The overall sensitivity for lung cancer detection in high risk populations was 73.6%. All large cell carcinomas were detected. The positive predictive value was 77.7%. The negative predictive value reached 94.8%.

CONCLUSION

With the fuzzy classifier and a marker panel, a reliable diagnostic tool for the detection of lung cancers in a high risk population is available.

摘要

背景

本研究的目的是评估模糊分类器和标志物组合(细胞角蛋白19片段、神经元特异性烯醇化酶、C反应蛋白)相较于患肺癌高风险的石棉沉着病患者在检测肺癌方面的诊断能力。

患者与方法

在新诊断的不同组织学类型和分期的肺癌患者中测量一组四种肿瘤标志物,即癌胚抗原、细胞角蛋白19片段、神经元特异性烯醇化酶、鳞状细胞癌抗原和C反应蛋白,并与石棉沉着病患者进行比较。在这项前瞻性研究中,利用216例原发性肺癌患者和76例石棉沉着病患者的数据生成了一个模糊分类器。患者和对照在吉森大学的诊所招募。

结果

在95%的特异性水平下,使用该工具能够检测出I期非小细胞肺癌的比例为70%(n = 30),II期为95%(n = 22),III期为98%(n = 56),IV期为92%(n = 50),疾病局限期小细胞肺癌(n = 21)为90.7%,疾病广泛期(n = 37)为97.3%。相比之下,单个标志物的检测率显著低于这些水平。在一个由38例非小细胞肺癌患者和76例石棉沉着病患者组成的独立群体中检验了该分类器的应用。后者在巴特赖兴哈尔或法尔肯施泰因的职业病诊所接受住院康复治疗。模糊分类器在76例无癌石棉沉着病患者中的75例显示正确的阴性分类,证实特异性为97.4%。在高风险人群中检测肺癌的总体敏感性为73.6%。所有大细胞癌均被检测到。阳性预测值为77.7%。阴性预测值达到94.8%。

结论

借助模糊分类器和标志物组合,可获得一种用于在高风险人群中检测肺癌的可靠诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验