Suppr超能文献

基于模糊逻辑的肿瘤标志物谱,包括一种新的标志物肿瘤M2-PK,提高了肺癌患者病情进展检测的敏感性。

Fuzzy logic-based tumor marker profiles including a new marker tumor M2-PK improved sensitivity to the detection of progression in lung cancer patients.

作者信息

Schneider Joachim, Peltri Gregor, Bitterlich Norman, Neu Kathleen, Velcovsky Hans-Georg, Morr Harald, Katz Norbert, Eigenbrodt Erich

机构信息

Institut und Poliklinik für Arbeits- und Sozialmedizin, Justus-Liebig Universität, Aulweg 129/III, 35385 Giessen, Germany.

出版信息

Anticancer Res. 2003 Mar-Apr;23(2A):899-906.

Abstract

In lung cancer patients tumor markers are used for disease monitoring. The goal of this study was to improve diagnostic efficiency in the detection of tumor progression in lung cancer patients by using fuzzy logic modeling in combination with a tumor marker panel (Tumor M2-PK, CYFRA 21-1, CEA, NSE and SCC). Thirty-three small cell lung cancers (SCLC) and 69 consecutive inoperable patients (40 squamous and 29 adenocarcinomas) were included in a prospective study. The changes of blood levels of tumor markers as well as their analysis by fuzzy logic modelling were compared to the clinical evaluation of response vs. non-response to therapy. Clinical monitoring was evaluated according to the standard criteria of the WHO. Tumor M2-PK was measured in plasma with an ELISA (ScheBo Biotech, Germany) and all other markers in sera (Roche, Germany). At a 90% specificity, the respective best single marker found the following fraction of all patients who had tumor progression clinically detected: in SCLC with NSE 52%, in adenocarcinoma with CYFRA 21-1 89% and in squamous carcinoma with SCC 65%. A fuzzy logic rule-based system employing a tumor marker panel increased the sensitivity in small cell carcinomas to 73% with the marker combination NSE/CEA and to 63% with the marker combination NSE/Tumor M2-PK, respectively. In squamous carcinomas an improvement of sensitivity is also observed using the marker combination of SCC/Tumor M2-PK (Sensitivity: 81%) or SCC/CEA (Sensitivity: 71%). By using the fuzzy logic method and the marker combination CYFRA 21-1/CEA as well as CYFRA 21-1/Tumor M2-PK, the detection of lung cancer progression was possible in all adenocarcinomas. With the fuzzy logic method and a tumor marker panel (including the new marker Tumor M2-PK), a useful diagnostic tool for the detection of progression in lung cancer patients is available.

摘要

在肺癌患者中,肿瘤标志物用于疾病监测。本研究的目的是通过将模糊逻辑建模与肿瘤标志物组合(肿瘤M2-PK、细胞角蛋白19片段21-1、癌胚抗原、神经元特异性烯醇化酶和鳞状细胞癌抗原)相结合,提高肺癌患者肿瘤进展检测的诊断效率。33例小细胞肺癌(SCLC)患者和69例连续的无法手术的患者(40例鳞状细胞癌和29例腺癌)被纳入一项前瞻性研究。将肿瘤标志物血液水平的变化以及通过模糊逻辑建模进行的分析与治疗反应与无反应的临床评估进行比较。根据世界卫生组织的标准标准评估临床监测。用酶联免疫吸附测定法(德国ScheBo生物技术公司)检测血浆中的肿瘤M2-PK,用血清(德国罗氏公司)检测所有其他标志物。在90%的特异性下,各自最佳的单一标志物在临床上检测到有肿瘤进展的所有患者中所占比例如下:在小细胞肺癌中,神经元特异性烯醇化酶检测到52%;在腺癌中,细胞角蛋白19片段21-1检测到89%;在鳞状细胞癌中,鳞状细胞癌抗原检测到65%。采用肿瘤标志物组合的基于模糊逻辑规则的系统将小细胞癌的敏感性分别提高到73%(神经元特异性烯醇化酶/癌胚抗原标志物组合)和63%(神经元特异性烯醇化酶/肿瘤M2-PK标志物组合)。在鳞状细胞癌中,使用鳞状细胞癌抗原/肿瘤M2-PK标志物组合(敏感性:81%)或鳞状细胞癌抗原/癌胚抗原标志物组合(敏感性:71%)也观察到敏感性的提高。通过使用模糊逻辑方法以及细胞角蛋白19片段21-1/癌胚抗原和细胞角蛋白19片段21-1/肿瘤M2-PK标志物组合,在所有腺癌中都有可能检测到肺癌进展。利用模糊逻辑方法和肿瘤标志物组合(包括新标志物肿瘤M2-PK),可获得一种用于检测肺癌患者病情进展的有用诊断工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验