Suppr超能文献

室外场景中全景快照的集水区。

Catchment areas of panoramic snapshots in outdoor scenes.

作者信息

Zeil Jochen, Hofmann Martin I, Chahl Javaan S

机构信息

Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra ACT 2601, Australia.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2003 Mar;20(3):450-69. doi: 10.1364/josaa.20.000450.

Abstract

We took panoramic snapshots in outdoor scenes at regular intervals in two- or three-dimensional grids covering 1 m2 or 1 m3 and determined how the root mean square pixel differences between each of the images and a reference image acquired at one of the locations in the grid develop over distance from the reference position. We then asked whether the reference position can be pinpointed from a random starting position by moving the panoramic imaging device in such a way that the image differences relative to the reference image are minimized. We find that on time scales of minutes to hours, outdoor locations are accurately defined by a clear, sharp minimum in a smooth three-dimensional (3D) volume of image differences (the 3D difference function). 3D difference functions depend on the spatial-frequency content of natural scenes and on the spatial layout of objects therein. They become steeper in the vicinity of dominant objects. Their shape and smoothness, however, are affected by changes in illumination and shadows. The difference functions generated by rotation are similar in shape to those generated by translation, but their plateau values are higher. Rotational difference functions change little with distance from the reference location. Simple gradient descent methods are surprisingly successful in recovering a goal location, even if faced with transient changes in illumination. Our results show that view-based homing with panoramic images is in principle feasible in natural environments and does not require the identification of individual landmarks. We discuss the relevance of our findings to the study of robot and insect homing.

摘要

我们在覆盖1平方米或1立方米的二维或三维网格中的户外场景中定期拍摄全景快照,并确定网格中每个图像与在网格中一个位置获取的参考图像之间的均方根像素差异如何随与参考位置的距离而变化。然后,我们询问是否可以通过移动全景成像设备,使相对于参考图像的图像差异最小化,从随机起始位置精确找到参考位置。我们发现,在几分钟到几小时的时间尺度上,户外位置可以通过在平滑的三维(3D)图像差异体积(3D差异函数)中清晰、尖锐的最小值来精确界定。3D差异函数取决于自然场景的空间频率内容及其内物体的空间布局。在主要物体附近,它们会变得更陡峭。然而,它们的形状和平滑度会受到光照和阴影变化的影响。旋转产生的差异函数在形状上与平移产生的相似,但它们的平稳值更高。旋转差异函数随与参考位置的距离变化不大。即使面对光照的瞬态变化,简单的梯度下降方法在恢复目标位置方面也出奇地成功。我们的结果表明,基于视图的全景图像归巢在自然环境中原则上是可行的,并且不需要识别单个地标。我们讨论了我们的发现与机器人和昆虫归巢研究的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验