Suppr超能文献

贝叶斯分析:新技术的一种新统计范式。

Bayesian analysis: a new statistical paradigm for new technology.

作者信息

Grunkemeier Gary L, Payne Nicola

机构信息

Providence Health System, Portland, Oregon, USA.

出版信息

Ann Thorac Surg. 2002 Dec;74(6):1901-8. doi: 10.1016/s0003-4975(02)04535-6.

Abstract

Full Bayesian analysis is an alternative statistical paradigm, as opposed to traditionally used methods, usually called frequentist statistics. Bayesian analysis is controversial because it requires assuming a prior distribution, which can be arbitrarily chosen; thus there is a subjective element, which is considered to be a major weakness. However, this could also be considered a strength since it provides a formal way of incorporating prior knowledge. Since it is flexible and permits repeated looks at evolving data, Bayesian analysis is particularly well suited to the evaluation of new medical technology. Bayesian analysis can refer to a range of things: from a simple, noncontroversial formula for inverting probabilities to an alternative approach to the philosophy of science. Its advantages include: (1) providing direct probability statements--which are what most people wrongly assume they are getting from conventional statistics; (2) formally incorporating previous information in statistical inference of a data set, a natural approach which we follow in everyday reasoning; and (3) flexible, adaptive research designs allowing multiple looks at accumulating study data. Its primary disadvantage is the element of subjectivity which some think is not scientific. We discuss and compare frequentist and Bayesian approaches and provide three examples of Bayesian analysis: (1) EKG interpretation, (2) a coin-tossing experiment, and (3) assessing the thromboembolic risk of a new mechanical heart valve.

摘要

与通常称为频率论统计学的传统方法相对,全贝叶斯分析是另一种统计范式。贝叶斯分析存在争议,因为它需要假设一个先验分布,而这个先验分布可以随意选择;因此存在主观因素,这被认为是一个主要弱点。然而,这也可以被视为一种优势,因为它提供了一种纳入先验知识的正式方法。由于贝叶斯分析灵活且允许对不断演变的数据进行反复审视,所以它特别适合用于评估新的医疗技术。贝叶斯分析可以指一系列内容:从一个简单的、无争议的概率反转公式到一种科学哲学的替代方法。其优点包括:(1)提供直接的概率陈述——这是大多数人错误地认为他们从传统统计学中得到的东西;(2)在数据集的统计推断中正式纳入先前的信息,这是我们在日常推理中遵循的自然方法;(3)灵活、适应性强的研究设计允许对不断积累的研究数据进行多次审视。其主要缺点是主观因素,有些人认为这是不科学的。我们讨论并比较频率论和贝叶斯方法,并提供三个贝叶斯分析的例子:(1)心电图解读,(2)抛硬币实验,以及(3)评估一种新型机械心脏瓣膜的血栓栓塞风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验