Suppr超能文献

P2噬菌体介导EcoT38I限制修饰基因水平转移至染色体DNA的证据以及大肠杆菌TH38菌株中缺陷型P2原噬菌体的多样性

Evidence for horizontal transfer of the EcoT38I restriction-modification gene to chromosomal DNA by the P2 phage and diversity of defective P2 prophages in Escherichia coli TH38 strains.

作者信息

Kita Keiko, Kawakami Hideaki, Tanaka Hiroaki

机构信息

Department of Biotechnology, Tottori University, Tottori, Japan.

出版信息

J Bacteriol. 2003 Apr;185(7):2296-305. doi: 10.1128/JB.185.7.2296-2305.2003.

Abstract

A DNA fragment carrying the genes coding for a novel EcoT38I restriction endonuclease (R.EcoT38I) and EcoT38I methyltransferase (M.EcoT38I), which recognize G(A/G)GC(C/T)C, was cloned from the chromosomal DNA of Escherichia coli TH38. The endonuclease and methyltransferase genes were in a head-to-head orientation and were separated by a 330-nucleotide intergenic region. A third gene, the C.EcoT38I gene, was found in the intergenic region, partially overlapping the R.EcoT38I gene. The gene product, C.EcoT38I, acted as both a positive regulator of R.EcoT38I gene expression and a negative regulator of M.EcoT38I gene expression. M.EcoT38I purified from recombinant E. coli cells was shown to be a monomeric protein and to methylate the inner cytosines in the recognition sequence. R.EcoT38I was purified from E. coli HB101 expressing M.EcoT38I and formed a homodimer. The EcoT38I restriction (R)-modification (M) system (R-M system) was found to be inserted between the A and Q genes of defective bacteriophage P2, which was lysogenized in the chromosome at locI, one of the P2 phage attachment sites observed in both E. coli K-12 MG1655 and TH38 chromosomal DNAs. Ten strains of E. coli TH38 were examined for the presence of the EcoT38I R-M gene on the P2 prophage. Conventional PCR analysis and assaying of R activity demonstrated that all strains carried a single copy of the EcoT38I R-M gene and expressed R activity but that diversity of excision in the ogr, D, H, I, and J genes in the defective P2 prophage had arisen.

摘要

从大肠杆菌TH38的染色体DNA中克隆出一个携带编码新型EcoT38I限制性内切酶(R.EcoT38I)和EcoT38I甲基转移酶(M.EcoT38I)基因的DNA片段,它们识别G(A/G)GC(C/T)C。内切酶基因和甲基转移酶基因呈头对头方向排列,中间被一个330个核苷酸的基因间隔区隔开。在基因间隔区发现了第三个基因,即C.EcoT38I基因,它部分重叠于R.EcoT38I基因。基因产物C.EcoT38I既是R.EcoT38I基因表达的正调控因子,也是M.EcoT38I基因表达的负调控因子。从重组大肠杆菌细胞中纯化得到的M.EcoT38I是一种单体蛋白,可甲基化识别序列中的内部胞嘧啶。从表达M.EcoT38I的大肠杆菌HB101中纯化得到的R.EcoT38I形成了同源二聚体。发现EcoT38I限制(R)-修饰(M)系统插入到缺陷噬菌体P2的A基因和Q基因之间,该噬菌体在locI处溶原化于染色体中,locI是在大肠杆菌K-12 MG1655和TH38染色体DNA中均观察到的P2噬菌体附着位点之一。检测了十株大肠杆菌TH38,以确定P2原噬菌体上是否存在EcoT38I R-M基因。常规PCR分析和R活性测定表明,所有菌株都携带一份EcoT38I R-M基因并表达R活性,但缺陷P2原噬菌体中ogr、D、H、I和J基因的切除存在多样性。

相似文献

2
Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA.
J Bacteriol. 1999 Nov;181(21):6822-7. doi: 10.1128/JB.181.21.6822-6827.1999.
3
Natural C-independent expression of restriction endonuclease in a C protein-associated restriction-modification system.
Nucleic Acids Res. 2016 Apr 7;44(6):2646-60. doi: 10.1093/nar/gkv1331. Epub 2015 Dec 9.
5
7
The Ecl18kI restriction-modification system: cloning, expression, properties of the purified enzymes.
FEBS Lett. 1998 Aug 21;433(3):233-6. doi: 10.1016/s0014-5793(98)00921-1.
9
Cloning, sequencing and expression of the Taq I restriction-modification system.
Nucleic Acids Res. 1987 Dec 10;15(23):9781-96. doi: 10.1093/nar/15.23.9781.
10
Organization and sequence of the HpaII restriction-modification system and adjacent genes.
Gene. 1994 May 3;142(1):9-15. doi: 10.1016/0378-1119(94)90348-4.

引用本文的文献

1
The role of rhizosphere phages in soil health.
FEMS Microbiol Ecol. 2024 Apr 10;100(5). doi: 10.1093/femsec/fiae052.
2
Mining bacterial NGS data vastly expands the complete genomes of temperate phages.
NAR Genom Bioinform. 2022 Aug 3;4(3):lqac057. doi: 10.1093/nargab/lqac057. eCollection 2022 Sep.
3
Comparative Genomic Analysis of : An Insight into Genomic Diversity and Genome Evolution.
Int J Genomics. 2019 Dec 18;2019:8987436. doi: 10.1155/2019/8987436. eCollection 2019.
4
Bci528I, a new isoschizomer of EcoRI isolated from Bacillus circulans 528.
Folia Microbiol (Praha). 2019 Nov;64(6):803-808. doi: 10.1007/s12223-019-00694-3. Epub 2019 Apr 1.
6
Prophage-mediated defence against viral attack and viral counter-defence.
Nat Microbiol. 2017 Jan 9;2:16251. doi: 10.1038/nmicrobiol.2016.251.
9
The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts.
Nucleic Acids Res. 2014;42(16):10618-31. doi: 10.1093/nar/gku734. Epub 2014 Aug 12.
10
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.
Appl Environ Microbiol. 2013 Dec;79(24):7547-55. doi: 10.1128/AEM.02229-13. Epub 2013 Oct 11.

本文引用的文献

1
Inheritance of prophage P2 in bacterial crosses.
Virology. 1958 Oct;6(2):357-81. doi: 10.1016/0042-6822(58)90089-8.
3
Mobility of a restriction-modification system revealed by its genetic contexts in three hosts.
J Bacteriol. 2002 May;184(9):2411-9. doi: 10.1128/JB.184.9.2411-2419.2002.
4
Molecular organization of intrinsic restriction and modification genes BsuM of Bacillus subtilis Marburg.
J Bacteriol. 2002 Jan;184(2):381-9. doi: 10.1128/JB.184.2.381-389.2002.
5
Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.
Nucleic Acids Res. 2001 Sep 15;29(18):3742-56. doi: 10.1093/nar/29.18.3742.
6
REBASE--restriction enzymes and methylases.
Nucleic Acids Res. 2001 Jan 1;29(1):268-9. doi: 10.1093/nar/29.1.268.
8
Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA.
J Bacteriol. 1999 Nov;181(21):6822-7. doi: 10.1128/JB.181.21.6822-6827.1999.
9
Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2192-7. doi: 10.1073/pnas.96.5.2192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验