Kennis John T M, Crosson Sean, Gauden Magdalena, van Stokkum Ivo H M, Moffat Keith, van Grondelle Rienk
Department of Biophysics, Faculty of Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands.
Biochemistry. 2003 Apr 1;42(12):3385-92. doi: 10.1021/bi034022k.
The phototropins constitute an important class of plant photoreceptor kinases that control a range of physiological responses, including phototropism, light-directed chloroplast movement, and light-induced stomatal opening. The LOV2 domain of phototropin binds a molecule of flavin mononucleotide (FMN) and undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine residue and the C(4a) atom of FMN. This product state promotes C-terminal kinase activation and downstream signal transduction. Here, we report the primary photophysics and photochemistry of LOV2 domains of phototropin 1 of Avena sativa (oat) and of the phy3 photoreceptor of Adiantum capillus-veneris (maidenhair fern). In agreement with earlier reports [Swartz, T. E., et al. (2001) J. Biol. Chem. 276, 36493-36500], we find that the FMN triplet state is the reactive species from which the photoreaction occurs. We demonstrate that the triplet state is the primary photoproduct in the LOV2 photocycle, generated at 60% efficiency. No spectroscopically distinguishable intermediates precede the FMN triplet on the femtosecond to nanosecond time scale, indicating that it is formed directly via intersystem crossing (ISC) from the singlet state. Our results indicate that the majority of the FMN triplets in the LOV2 domain exist in the protonated form. We propose a reaction mechanism that involves excited-state proton transfer, on the nanosecond time scale or faster, from the sulfhydryl group of the conserved cysteine to the N5 atom of FMN. This event promotes adduct formation by increasing the electrophilicity of C(4a) and subsequent nucleophilic attack by the cysteine's thiolate anion. Comparison to free FMN in solution shows that the protein environment of LOV2 increases the ISC rate of FMN by a factor of 2.4, thus improving the yield of the cysteinyl-flavin adduct and the efficiency of phototropin-mediated signaling processes.
向光素构成了一类重要的植物光受体激酶,可控制一系列生理反应,包括向光性、光驱动的叶绿体运动以及光诱导的气孔开放。向光素的LOV2结构域结合一分子黄素单核苷酸(FMN),并经历一个光循环,该循环涉及在一个保守的半胱氨酸残基与FMN的C(4a)原子之间由光驱动形成共价加合物。这种产物状态促进C末端激酶激活和下游信号转导。在此,我们报告了燕麦(Avena sativa)向光素1的LOV2结构域以及铁线蕨(Adiantum capillus-veneris)phy3光受体的初级光物理和光化学性质。与早期报告[Swartz, T. E., 等人(2001年)《生物化学杂志》276, 36493 - 36500]一致,我们发现FMN三重态是发生光反应的活性物种。我们证明三重态是LOV2光循环中的主要光产物,其生成效率为60%。在飞秒到纳秒时间尺度上,在FMN三重态之前没有光谱上可区分的中间体,这表明它是直接通过从单重态的系间窜越(ISC)形成的。我们的结果表明,LOV2结构域中的大多数FMN三重态以质子化形式存在。我们提出了一种反应机制,该机制涉及在纳秒或更快的时间尺度上,从保守半胱氨酸的巯基向FMN的N5原子进行激发态质子转移。这一事件通过增加C(4a)的亲电性以及随后半胱氨酸硫醇盐阴离子的亲核攻击来促进加合物的形成。与溶液中的游离FMN相比,LOV2的蛋白质环境使FMN的ISC速率提高了2.4倍,从而提高了半胱氨酸 - 黄素加合物的产率以及向光素介导的信号转导过程的效率。