Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, PA, 19122, USA.
Department of Physical Sciences, Benedictine University, 5700 College Rd, Lisle, IL, 60532, USA.
Photochem Photobiol Sci. 2022 Jun;21(6):959-982. doi: 10.1007/s43630-022-00187-2. Epub 2022 Feb 26.
Flavins are photoenzymatic cofactors often exploiting the absorption of light to energize photoinduced redox chemistry in a variety of contexts. Both flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are used for this function. The study of these photoenzymes has been facilitated using flavin analogs. Most of these analogs involve modification of the flavin ring, and there is recent evidence that adenine (Ade)-modified FAD can affect enzyme turnover, but so far this has only been shown for enzymes where the adenine and flavin rings are close to each other in a stacked conformation. FAD is also stacked in aqueous solution, and its photodynamics are quite different from unstacked FAD or FMN. Oxidized photoexcited FAD decays rapidly, presumably through PET with Ade as donor and Fl* as acceptor. Definitive identification of the spectral signatures of Ade and Fl radicals is elusive. Here we use the FAD analog Flavin 1,N-Ethenoadenine Dinucleotide (εFAD) to study how different photochemical outcomes depend on the identity of the Ade moiety in stacked FAD and its analog εFAD. We have used UV-Vis transient absorption spectroscopy complemented by TD-DFT calculations to investigate the excited state evolution of the flavins. In FAD*, no radicals were observed, suggesting that FAD* does not undergo PET. εFAD* kinetics showed a broad absorption band that suggests a charge transfer state exists upon photoexcitation with evidence for radical pair formation. Surprisingly, significant triplet flavin was produced from εFAD* We hypothesize that the dipolar (ε)Ade moieties differentially modulate the singlet-triplet energy gap, resulting in different intersystem crossing rates. The additional electron density on the etheno group of εFAD supplies better orbital overlap with the flavin S state, accelerating charge transfer in that molecule.
黄素是光酶辅助因子,常用于在多种情况下利用光吸收为光诱导氧化还原化学提供能量。黄素腺嘌呤二核苷酸(FAD)和黄素单核苷酸(FMN)都可用于此功能。这些光酶的研究得益于黄素类似物的使用。这些类似物大多涉及黄素环的修饰,最近有证据表明腺嘌呤(Ade)修饰的 FAD 可以影响酶的周转率,但到目前为止,这仅在 Ade 和黄素环在堆叠构象中彼此靠近的酶中得到证明。FAD 在水溶液中也堆叠,其光动力性质与非堆叠的 FAD 或 FMN 有很大不同。氧化光激发的 FAD 迅速衰减,可能是通过 Ade 作为供体和 Fl作为受体的 PET 衰减。Ade 和 Fl 自由基的光谱特征的明确鉴定仍难以捉摸。在这里,我们使用黄素类似物 Flavin 1,N-Ethenoadenine Dinucleotide(εFAD)来研究堆叠 FAD 及其类似物 εFAD 中 Ade 部分的身份如何影响不同的光化学结果。我们使用紫外可见瞬态吸收光谱辅以 TD-DFT 计算来研究黄素的激发态演化。在 FAD中,没有观察到自由基,表明 FAD不经历 PET。εFAD动力学显示出宽的吸收带,表明光激发后存在电荷转移态,并存在自由基对形成的证据。令人惊讶的是,从 εFAD*中产生了大量三重态黄素。我们假设偶极(ε)Ade 部分差异调节单重态-三重态能隙,导致不同的系间窜越速率。εFAD 上额外的电子密度更好地与黄素 S 态的轨道重叠,从而加速该分子中的电荷转移。