Suppr超能文献

使用顺序统计量和泊松混合模型即时解码尖峰序列。

Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model.

作者信息

Wiener Matthew C, Richmond Barry J

机构信息

Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4415, USA.

出版信息

J Neurosci. 2003 Mar 15;23(6):2394-406. doi: 10.1523/JNEUROSCI.23-06-02394.2003.

Abstract

In the brain, spike trains are generated in time and presumably also interpreted as they unfold in time. Recent work (Oram et al., 1999; Baker and Lemon, 2000) suggests that in several areas of the monkey brain, individual spike times carry information because they reflect an underlying rate variation. Constructing a model based on this stochastic structure allows us to apply order statistics to decode spike trains instant by instant as spikes arrive or do not. Order statistics are time-consuming to compute in the general case. We demonstrate that data from neurons in primary visual cortex are well fit by a mixture of Poisson processes; in this special case, our computations are substantially faster. In these data, spike timing contributed information beyond that available from the spike count throughout the trial. At the end of the trial, a decoder based on the mixture-of-Poissons model correctly decoded about three times as many trials as expected by chance, compared with approximately twice as many as expected by chance using the spike count only. If our model perfectly described the spike trains, and enough data were available to estimate model parameters, then our Bayesian decoder would be optimal. For four-fifths of the sets of stimulus-elicited responses, the observed spike trains were consistent with the mixture-of-Poissons model. Most of the error in estimating stimulus probabilities is attributable to not having enough data to specify the parameters of the model rather than to misspecification of the model itself.

摘要

在大脑中,尖峰序列是随时间产生的,并且在其随时间展开的过程中大概也会被解读。最近的研究(奥勒姆等人,1999年;贝克和莱蒙,2000年)表明,在猴脑的几个区域,单个尖峰时间携带信息,因为它们反映了潜在的速率变化。基于这种随机结构构建一个模型,使我们能够应用顺序统计量来在尖峰到达或未到达时即时解码尖峰序列。在一般情况下,计算顺序统计量很耗时。我们证明,初级视觉皮层中神经元的数据可以很好地用泊松过程的混合来拟合;在这种特殊情况下,我们的计算速度大幅提高。在这些数据中,尖峰时间所贡献的信息超出了整个试验中尖峰计数所提供的信息。在试验结束时,基于泊松混合模型的解码器正确解码的试验次数大约是随机预期次数的三倍,而仅使用尖峰计数时大约是随机预期次数的两倍。如果我们的模型完美地描述了尖峰序列,并且有足够的数据来估计模型参数,那么我们的贝叶斯解码器将是最优的。对于五分之四的刺激诱发反应集,观察到的尖峰序列与泊松混合模型一致。估计刺激概率时的大多数误差归因于没有足够的数据来指定模型参数,而不是模型本身的错误设定。

相似文献

8
Response features determining spike times.决定尖峰时间的反应特征。
Neural Plast. 1999;6(4):133-45. doi: 10.1155/NP.1999.133.

引用本文的文献

2
Uncertainty minimization and pattern recognition in and .以及中的不确定性最小化与模式识别。
J R Soc Interface. 2025 Feb;22(223):20240645. doi: 10.1098/rsif.2024.0645. Epub 2025 Feb 26.
4
Models developed for spiking neural networks.为脉冲神经网络开发的模型。
MethodsX. 2023 Mar 24;10:102157. doi: 10.1016/j.mex.2023.102157. eCollection 2023.
6
Quantifying Neuronal Information Flow in Response to Frequency and Intensity Changes in the Auditory Cortex.量化听觉皮层中神经元对频率和强度变化的信息流。
Conf Rec Asilomar Conf Signals Syst Comput. 2018 Oct;2018:1367-1371. doi: 10.1109/ACSSC.2018.8645091. Epub 2019 Feb 21.
10
Partitioning neuronal variability.神经元变异性的分区。
Nat Neurosci. 2014 Jun;17(6):858-65. doi: 10.1038/nn.3711. Epub 2014 Apr 28.

本文引用的文献

3
Instant neural control of a movement signal.运动信号的即时神经控制。
Nature. 2002 Mar 14;416(6877):141-2. doi: 10.1038/416141a.
7
Consistency of encoding in monkey visual cortex.猴子视觉皮层中编码的一致性。
J Neurosci. 2001 Oct 15;21(20):8210-21. doi: 10.1523/JNEUROSCI.21-20-08210.2001.
8
A spike-train probability model.一种尖峰序列概率模型。
Neural Comput. 2001 Aug;13(8):1713-20. doi: 10.1162/08997660152469314.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验