Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, United States.
Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
Elife. 2021 Oct 5;10:e64615. doi: 10.7554/eLife.64615.
Neurons respond selectively to stimuli, and thereby define a code that associates stimuli with population response patterns. Certain correlations within population responses (noise correlations) significantly impact the information content of the code, especially in large populations. Understanding the neural code thus necessitates response models that quantify the coding properties of modelled populations, while fitting large-scale neural recordings and capturing noise correlations. In this paper, we propose a class of response model based on mixture models and exponential families. We show how to fit our models with expectation-maximization, and that they capture diverse variability and covariability in recordings of macaque primary visual cortex. We also show how they facilitate accurate Bayesian decoding, provide a closed-form expression for the Fisher information, and are compatible with theories of probabilistic population coding. Our framework could allow researchers to quantitatively validate the predictions of neural coding theories against both large-scale neural recordings and cognitive performance.
神经元对刺激有选择性的反应,从而定义了一种将刺激与群体反应模式相关联的编码方式。群体反应中的某些相关性(噪声相关性)会显著影响编码的信息含量,尤其是在大群体中。因此,理解神经编码需要能够量化模型群体编码特性的响应模型,同时拟合大规模的神经记录并捕捉噪声相关性。在本文中,我们提出了一类基于混合模型和指数族的响应模型。我们展示了如何使用期望最大化来拟合我们的模型,以及它们如何捕捉猕猴初级视觉皮层记录中的多种可变性和共变性。我们还展示了它们如何促进准确的贝叶斯解码,为 Fisher 信息提供一个封闭形式的表达式,并且与概率群体编码理论兼容。我们的框架可以让研究人员根据大规模的神经记录和认知表现,对神经编码理论的预测进行定量验证。