Suppr超能文献

不同信息测度中有限抽样偏差的分析估计。

Analytical estimates of limited sampling biases in different information measures.

作者信息

Panzeri Stefano, Treves Alessandro

机构信息

a Biophysics , SISSA, via Beirut 2-4, 34013 Trieste , Italy.

b Mathematical Physics , SISSA, via Beirut 2-4, 34013 Trieste , Italy.

出版信息

Network. 1996;7(1):87-107. doi: 10.1080/0954898X.1996.11978656.

Abstract

Measuring the information carried by neuronal activity is made difficult, particularly when recording from mammalian cells, by the limited amount of data usually available, which results in a systematic error. While empirical ad hoc procedures have been used to correct for such error, we have recently proposed a direct procedure consisting of the analytical calculation of the average error, its estimation (up to subleading terms) from the data, and its subtraction from raw information measures to yield unbiased measures. We calculate here the leading correction terms for both the average transmitted information and the conditional information and, since usually one must first regularize the data, we specify the expressions appropriate to different regularizations. Computer simulations indicate a broad range of validity of the analytical results, suggest the effectiveness of regularizing by simple binning and illustrate the advantage of this over the previously used 'bootstrap' procedure.

摘要

测量神经元活动所携带的信息存在困难,特别是在从哺乳动物细胞进行记录时,因为通常可获得的数据量有限,这会导致系统误差。虽然已经采用经验性的临时程序来校正这种误差,但我们最近提出了一种直接程序,该程序包括对平均误差进行解析计算、从数据中估计(直至次主导项)平均误差,以及从原始信息度量中减去该误差以产生无偏度量。我们在此计算平均传输信息和条件信息的主导校正项,并且由于通常必须首先对数据进行正则化,所以我们指定了适用于不同正则化的表达式。计算机模拟表明分析结果具有广泛的有效性,表明通过简单分箱进行正则化的有效性,并说明了这相对于先前使用的“自助法”程序的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验