Suppr超能文献

在酿酒酵母的双链断裂修复过程中,依赖Ku和不依赖Ku的末端连接途径会导致染色体重排。

Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae.

作者信息

Yu Xin, Gabriel Abram

机构信息

Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

Genetics. 2003 Mar;163(3):843-56. doi: 10.1093/genetics/163.3.843.

Abstract

Chromosomal double-strand breaks (DSBs) can be repaired by either homology-dependent or homology-independent pathways. Nonhomologous repair mechanisms have been relatively less well studied, despite their potential importance in generating chromosomal rearrangements. We have developed a Saccharomyces cerevisiae-based assay to identify and characterize homology-independent chromosomal rearrangements associated with repair of a unique DSB generated within an engineered URA3 gene. Approximately 1% of successfully repaired cells have accompanying chromosomal rearrangements consisting of large insertions, deletions, aberrant gene conversions, or other more complex changes. We have analyzed rearrangements in isogenic wild-type, rad52, yku80, and rad52 yku80 strains, to determine the types of events that occur in the presence or absence of these key repair proteins. Deletions were found in all strain backgrounds, but insertions were dependent upon the presence of Yku80p. A rare RAD52- and YKU80-independent form of deletion was present in all strains. These events were characterized by long one-sided deletions (up to 13 kb) and extensive imperfect overlapping sequences (7-22 bp) at the junctions. Our results demonstrate that the frequency and types of repair events depend on the specific genetic context. This approach can be applied to a number of problems associated with chromosome stability.

摘要

染色体双链断裂(DSB)可通过同源依赖性或同源非依赖性途径进行修复。尽管非同源修复机制在产生染色体重排方面具有潜在重要性,但对其研究相对较少。我们开发了一种基于酿酒酵母的检测方法,以鉴定和表征与工程化URA3基因内产生的独特DSB修复相关的同源非依赖性染色体重排。约1%成功修复的细胞伴有染色体重排,包括大的插入、缺失、异常基因转换或其他更复杂的变化。我们分析了同基因野生型、rad52、yku80和rad52 yku80菌株中的重排,以确定在这些关键修复蛋白存在或不存在的情况下发生的事件类型。在所有菌株背景中均发现了缺失,但插入依赖于Yku80p的存在。所有菌株中均存在一种罕见的不依赖RAD52和YKU80的缺失形式。这些事件的特征是长的单边缺失(长达13 kb)和连接处广泛的不完全重叠序列(7 - 22 bp)。我们的结果表明,修复事件的频率和类型取决于特定的遗传背景。这种方法可应用于许多与染色体稳定性相关的问题。

相似文献

4
Binding of double-strand breaks in DNA by human Rad52 protein.
Nature. 1999 Apr 22;398(6729):728-31. doi: 10.1038/19560.
6
Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae.
Mol Cell Biol. 1996 Aug;16(8):4189-98. doi: 10.1128/MCB.16.8.4189.
7
Telomere-related functions of yeast KU in the repair of bleomycin-induced DNA damage.
Biochem Biophys Res Commun. 2007 Jun 8;357(3):800-3. doi: 10.1016/j.bbrc.2007.04.011. Epub 2007 Apr 10.
8
Protection of telomeres by the Ku protein in fission yeast.
Mol Biol Cell. 2000 Oct;11(10):3265-75. doi: 10.1091/mbc.11.10.3265.
10
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in .
Genetics. 2018 May;209(1):115-128. doi: 10.1534/genetics.117.300672. Epub 2018 Mar 2.

引用本文的文献

1
DNA Damage and Its Role in Cancer Therapeutics.
Int J Mol Sci. 2023 Mar 1;24(5):4741. doi: 10.3390/ijms24054741.
2
Replication-independent instability of Friedreich's ataxia GAA repeats during chronological aging.
Proc Natl Acad Sci U S A. 2021 Feb 2;118(5). doi: 10.1073/pnas.2013080118.
3
Therapeutic application of the CRISPR system: current issues and new prospects.
Hum Genet. 2019 Jun;138(6):563-590. doi: 10.1007/s00439-019-02028-2. Epub 2019 May 21.
6
Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation.
Front Microbiol. 2018 Feb 22;9:288. doi: 10.3389/fmicb.2018.00288. eCollection 2018.
8
And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break.
Philos Trans R Soc Lond B Biol Sci. 2017 Oct 5;372(1731). doi: 10.1098/rstb.2016.0291.
9
The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks.
J Biol Chem. 2017 Sep 1;292(35):14576-14586. doi: 10.1074/jbc.M117.796011. Epub 2017 Jul 5.
10
Mobile Introns Shape the Genetic Diversity of Their Host Genes.
Genetics. 2017 Apr;205(4):1641-1648. doi: 10.1534/genetics.116.199059. Epub 2017 Feb 13.

本文引用的文献

2
Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells.
Eur J Immunol. 2002 Mar;32(3):701-9. doi: 10.1002/1521-4141(200203)32:3<701::AID-IMMU701>3.0.CO;2-T.
4
Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes.
Mol Cell. 2001 Nov;8(5):1105-15. doi: 10.1016/s1097-2765(01)00388-4.
5
NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae.
Nature. 2001 Dec 6;414(6864):666-9. doi: 10.1038/414666a.
7
A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae.
Science. 2001 Dec 21;294(5551):2552-6. doi: 10.1126/science.1065672. Epub 2001 Nov 8.
8
Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast.
Curr Biol. 2001 Oct 16;11(20):1611-7. doi: 10.1016/s0960-9822(01)00488-2.
10
Promiscuous patching of broken chromosomes in mammalian cells with extrachromosomal DNA.
Nucleic Acids Res. 2001 Oct 1;29(19):3975-81. doi: 10.1093/nar/29.19.3975.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验