Simpson Michael L, Cox Chris D, Sayler Gary S
Molecular Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, P.O. Box 2008, MS 6006, Oak Ridge, TN 37831-6006, USA.
Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4551-6. doi: 10.1073/pnas.0736140100. Epub 2003 Apr 1.
We describe a frequency domain technique for the analysis of intrinsic noise within negatively autoregulated gene circuits. This approach is based on the transfer function around the feedback loop (loop transmission) and the equivalent noise bandwidth of the system. The loop transmission, T, is shown to be a determining factor of the dynamics and the noise behavior of autoregulated gene circuits, and this T-based technique provides a simple and flexible method for the analysis of noise arising from any source within the gene circuit. We show that negative feedback not only reduces the variance of the noise in the protein concentration, but also shifts this noise to higher frequencies where it may have a negligible effect on the noise behavior of following gene circuits within a cascade. This predicted effect is demonstrated through the exact stochastic simulation of a two-gene cascade. The analysis elucidates important aspects of gene circuit structure that control functionality, and may provide some insights into selective pressures leading to this structure. The resulting analytical relationships have a simple form, making them especially useful as synthetic gene circuit design equations. With the exception of the linearization of Hill kinetics, this technique is general and may be applied to the analysis or design of networks of higher complexity. This utility is demonstrated through the exact stochastic simulation of an autoregulated two-gene cascade operating near instability.
我们描述了一种用于分析负自调节基因回路中固有噪声的频域技术。该方法基于反馈回路周围的传递函数(回路传输)和系统的等效噪声带宽。回路传输T被证明是自调节基因回路动力学和噪声行为的决定因素,这种基于T的技术为分析基因回路中任何来源产生的噪声提供了一种简单而灵活的方法。我们表明,负反馈不仅降低了蛋白质浓度噪声的方差,还将这种噪声转移到更高频率,在级联中对后续基因回路的噪声行为可能产生可忽略不计的影响。通过对双基因级联的精确随机模拟证明了这种预测效应。该分析阐明了控制功能的基因回路结构的重要方面,并可能为导致这种结构的选择压力提供一些见解。所得的分析关系具有简单的形式,使其作为合成基因回路设计方程特别有用。除了希尔动力学的线性化之外,该技术具有通用性,可应用于更高复杂度网络的分析或设计。通过对接近不稳定性运行的自调节双基因级联的精确随机模拟证明了这种实用性。