Suppr超能文献

规律不可见,随机性可见:熵收敛水平。

Regularities unseen, randomness observed: levels of entropy convergence.

作者信息

Crutchfield James P, Feldman David P

机构信息

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.

出版信息

Chaos. 2003 Mar;13(1):25-54. doi: 10.1063/1.1530990.

Abstract

We study how the Shannon entropy of sequences produced by an information source converges to the source's entropy rate. We synthesize several phenomenological approaches to applying information theoretic measures of randomness and memory to stochastic and deterministic processes by using successive derivatives of the Shannon entropy growth curve. This leads, in turn, to natural measures of apparent memory stored in a source and the amounts of information that must be extracted from observations of a source in order for it to be optimally predicted and for an observer to synchronize to it. To measure the difficulty of synchronization, we define the transient information and prove that, for Markov processes, it is related to the total uncertainty experienced while synchronizing to a process. One consequence of ignoring a process's structural properties is that the missed regularities are converted to apparent randomness. We demonstrate that this problem arises particularly for settings where one has access only to short measurement sequences. Numerically and analytically, we determine the Shannon entropy growth curve, and related quantities, for a range of stochastic and deterministic processes. We conclude by looking at the relationships between a process's entropy convergence behavior and its underlying computational structure.

摘要

我们研究信息源产生的序列的香农熵如何收敛到源的熵率。我们通过使用香农熵增长曲线的逐次导数,综合了几种将随机性和记忆的信息论度量应用于随机和确定性过程的现象学方法。这进而导致了对源中存储的表观记忆以及为了对源进行最优预测和使观察者与之同步而必须从源的观测中提取的信息量的自然度量。为了衡量同步的难度,我们定义了瞬态信息,并证明对于马尔可夫过程,它与同步到一个过程时所经历的总不确定性有关。忽略一个过程的结构属性的一个后果是,错过的规律性会转化为表观随机性。我们证明这个问题在只能访问短测量序列的情况下尤其会出现。通过数值和分析方法,我们确定了一系列随机和确定性过程的香农熵增长曲线以及相关量。我们通过研究一个过程的熵收敛行为与其底层计算结构之间的关系来得出结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验