Suppr超能文献

分解过去和未来:基于共享概率质量排除的综合信息分解。

Decomposing past and future: Integrated information decomposition based on shared probability mass exclusions.

机构信息

Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States of America.

School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States of America.

出版信息

PLoS One. 2023 Mar 23;18(3):e0282950. doi: 10.1371/journal.pone.0282950. eCollection 2023.

Abstract

A core feature of complex systems is that the interactions between elements in the present causally constrain their own futures, and the futures of other elements as the system evolves through time. To fully model all of these interactions (between elements, as well as ensembles of elements), it is possible to decompose the total information flowing from past to future into a set of non-overlapping temporal interactions that describe all the different modes by which information can be stored, transferred, or modified. To achieve this, I propose a novel information-theoretic measure of temporal dependency (Iτsx) based on the logic of local probability mass exclusions. This integrated information decomposition can reveal emergent and higher-order interactions within the dynamics of a system, as well as refining existing measures. To demonstrate the utility of this framework, I apply the decomposition to spontaneous spiking activity recorded from dissociated neural cultures of rat cerebral cortex to show how different modes of information processing are distributed over the system. Furthermore, being a localizable analysis, Iτsx can provide insight into the computational structure of single moments. I explore the time-resolved computational structure of neuronal avalanches and find that different types of information atoms have distinct profiles over the course of an avalanche, with the majority of non-trivial information dynamics happening before the first half of the cascade is completed. These analyses allow us to move beyond the historical focus on single measures of dependency such as information transfer or information integration, and explore a panoply of different relationships between elements (and groups of elements) in complex systems.

摘要

复杂系统的一个核心特征是,当前元素之间的相互作用因果地约束了它们自己的未来,以及随着系统随时间演化,其他元素的未来。为了充分模拟所有这些相互作用(元素之间以及元素集合之间),可以将从过去到未来流动的总信息分解为一组不重叠的时间相互作用,这些相互作用描述了信息可以存储、传输或修改的所有不同方式。为了实现这一点,我提出了一种基于局部概率质量排除逻辑的新的时间依赖性信息论度量(Iτsx)。这种综合信息分解可以揭示系统动态中的涌现和高阶相互作用,以及改进现有的度量。为了展示这个框架的实用性,我将分解应用于从大鼠大脑皮层分离的神经培养物中记录的自发尖峰活动,以展示不同的信息处理模式如何在系统中分布。此外,作为一种可定位的分析,Iτsx 可以深入了解单个时刻的计算结构。我探索了神经元瀑流的时间分辨计算结构,发现不同类型的信息原子在瀑流过程中有不同的分布,大部分非平凡的信息动力学发生在瀑流的前半部分完成之前。这些分析使我们能够超越历史上对依赖性的单一度量(如信息传递或信息整合)的关注,并探索复杂系统中元素(和元素组)之间的多种不同关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9957/10035902/2155802b2bfe/pone.0282950.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验