Suppr超能文献

用于检测以及中央凹和中央凹旁区域位置辨别的分类图像。

Classification images for detection and position discrimination in the fovea and parafovea.

作者信息

Levi Dennis M, Klein Stanley A

机构信息

School of Optometry, University of California, Berkeley, CA, USA.

出版信息

J Vis. 2002;2(1):46-65. doi: 10.1167/2.1.4.

Abstract

Classification images provide an important new method for learning about which parts of the stimulus are used to make perceptual decisions and provide a new tool for measuring the template an observer uses to accomplish a task. Here we introduce a new method using one-dimensional sums of sinusoids as both test stimuli (discrete frequency patterns [DFP]) and as noise. We use this method to study and compare the templates used to detect a target and to discriminate the target's position in central and parafoveal vision. Our results show that, unsurprisingly, the classification images for detection in both foveal and parafoveal vision resemble the DFP test stimulus, but are considerably broader in spatial frequency tuning than the ideal observer. In contrast, the classification images for foveal position discrimination are not ideal, and depend on the size of the position offset. Over a range of offsets from close to threshold to about 90 arc sec, our observers appear to use a peak strategy (responding to the location of the peak of the luminance profile of the target plus noise). Position acuity is much less acute in the parafovea, and this is reflected in the reduced root efficiency (i.e., square root of efficiency) and the coarse classification images for peripheral position discrimination. The peripheral position template is a low spatial frequency template.

摘要

分类图像提供了一种重要的新方法,用于了解刺激的哪些部分被用于做出感知决策,并提供了一种新工具来测量观察者用于完成任务的模板。在这里,我们介绍一种新方法,使用正弦波的一维和作为测试刺激(离散频率模式[DFP])以及噪声。我们使用这种方法来研究和比较用于检测目标以及辨别目标在中央和旁中央视觉中位置的模板。我们的结果表明,不出所料,中央凹和旁中央视觉中用于检测的分类图像类似于DFP测试刺激,但在空间频率调谐方面比理想观察者宽得多。相比之下,中央凹位置辨别的分类图像并不理想,并且取决于位置偏移的大小。在从接近阈值到约90角秒的一系列偏移范围内,我们的观察者似乎采用了峰值策略(对目标加噪声的亮度轮廓峰值的位置做出反应)。旁中央凹的位置敏锐度要低得多,这反映在根效率降低(即效率的平方根)以及周边位置辨别的粗糙分类图像中。周边位置模板是一个低空间频率模板。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验