Deiters Alexander, Chen Kevin, Eary C Todd, Martin Stephen F
Department of Chemistry and Biochemistry, The University of Texas, Austin, TX 78712, USA.
J Am Chem Soc. 2003 Apr 16;125(15):4541-50. doi: 10.1021/ja0296024.
A concise synthesis of (+)-geissoschizine (1), a biosynthetic precursor of a variety of monoterpenoid indole alkaloids, from d-tryptophan (19) was performed as a critical prelude to achieving the first biomimetic, enantioselective synthesis of the sarpagine alkaloid (+)-N(a)-methylvellosimine (5). The approach to (+)-geissoschizine was designed to address the dual problems of stereocontrolled formation of the E-ethylidene moiety and the correct relative configuration at C(3) and C(15). Key steps in the synthesis involve a vinylogous Mannich reaction to prepare the carboline 22, which has the absolute stereochemistry at C(3) corresponding to that in 1 and 5, and an intramolecular Michael addition that leads to the tetracyclic corynantheane derivative 24, which possesses the correct stereochemical relationship between C(3) and C(15). Compound 24 was then transformed into 27, the pivotal intermediate in the syntheses of 1 and 5, by a sequence that allowed the stereospecific introduction of the E-ethylidene moiety. Selective reduction of the lactam in 27 followed by removal of the C(5) carboxyl group by radical decarbonylation gave deformylgeissoschizine (2) that was converted into (+)-geissoschizine (1) by formylation. The common intermediate 27 was then converted via a straightforward sequence of reactions into the alpha-amino nitrile 39. The derived silyl enol ether 40 underwent ionization upon exposure to BF(3).OEt(2) to give the intermediate iminium ion 41 that then cyclized in a biomimetically inspired intramolecular Mannich reaction to deliver (+)-N(a)-methylvellosimine (5). This transformation provides experimental support for the involvement of such a cyclization as one of the key steps in the biosynthesis of the sarpagine and ajmaline alkaloids.
以 d - 色氨酸(19)为原料,简洁合成了多种单萜吲哚生物碱的生物合成前体(+)- 盖苏西嗪(1),这是实现蛇根碱生物碱(+)- N(α)- 甲基维洛西明(5)首次仿生对映选择性合成的关键前奏。合成(+)- 盖苏西嗪的方法旨在解决 E - 亚乙基部分的立体控制形成以及 C(3)和 C(15)处正确相对构型的双重问题。合成中的关键步骤包括一个烯丙型曼尼希反应以制备咔啉 22,其 C(3)处的绝对立体化学与 1 和 5 中的对应,以及一个分子内迈克尔加成反应,该反应生成四环柯楠烷衍生物 24,其 C(3)和 C(15)之间具有正确的立体化学关系。然后通过一系列反应将化合物 24 转化为 27,27 是合成 1 和 5 的关键中间体,该系列反应允许立体选择性引入 E - 亚乙基部分。选择性还原 27 中的内酰胺,然后通过自由基脱羰去除 C(5)羧基,得到去甲酰基盖苏西嗪(2),其通过甲酰化转化为(+)- 盖苏西嗪(1)。然后将共同中间体 27 通过一系列直接反应转化为α - 氨基腈 39。衍生的硅烯醇醚 40 在暴露于 BF₃·OEt₂时发生离子化,生成中间体亚胺离子 41,然后该亚胺离子在仿生启发下的分子内曼尼希反应中环化,生成(+)- N(α)- 甲基维洛西明(5)。这种转化为这种环化作为蛇根碱和阿马林生物碱生物合成中的关键步骤之一提供了实验支持。