Suppr超能文献

量化神经反应的变异性及其在模型预测验证中的应用。

Quantifying variability in neural responses and its application for the validation of model predictions.

作者信息

Hsu Anne, Borst Alexander, Theunissen Frédéric E

机构信息

Department of Physics, University of California, Berkeley, CA, USA.

出版信息

Network. 2004 May;15(2):91-109.

Abstract

A rate code assumes that a neuron's response is completely characterized by its time-varying mean firing rate. This assumption has successfully described neural responses in many systems. The noise in rate coding neurons can be quantified by the coherence function or the correlation coefficient between the neuron's deterministic time-varying mean rate and noise corrupted single spike trains. Because of the finite data size, the mean rate cannot be known exactly and must be approximated. We introduce novel unbiased estimators for the measures of coherence and correlation which are based on the extrapolation of the signal to noise ratio in the neural response to infinite data size. We then describe the application of these estimates to the validation of the class of stimulus-response models that assume that the mean firing rate captures all the information embedded in the neural response. We explain how these quantifiers can be used to separate response prediction errors that are due to inaccurate model assumptions from errors due to noise inherent in neuronal spike trains.

摘要

速率编码假设神经元的反应完全由其随时间变化的平均发放率来表征。这一假设已成功描述了许多系统中的神经反应。速率编码神经元中的噪声可以通过相干函数或神经元确定性随时间变化的平均发放率与受噪声干扰的单个脉冲序列之间的相关系数来量化。由于数据量有限,平均发放率无法精确得知,必须进行近似。我们基于将神经反应中的信噪比外推到无限数据量,引入了用于相干性和相关性度量的新型无偏估计器。然后,我们描述了这些估计在验证一类刺激 - 反应模型中的应用,这类模型假设平均发放率捕获了神经反应中嵌入的所有信息。我们解释了如何使用这些量化器将由于不准确的模型假设导致的反应预测误差与由于神经元脉冲序列中固有的噪声导致的误差区分开来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验