Suppr超能文献

群体活动统计剖析了初级视觉皮层中的阈下和放电变异性。

Population activity statistics dissect subthreshold and spiking variability in V1.

作者信息

Bányai Mihály, Koman Zsombor, Orbán Gergő

机构信息

Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, Budapest, Hungary; and

Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, Budapest, Hungary; and.

出版信息

J Neurophysiol. 2017 Jul 1;118(1):29-46. doi: 10.1152/jn.00931.2016. Epub 2017 Mar 15.

Abstract

Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity.

摘要

通过重复进行试验时波动的反应所测量的反应变异性是神经反应的一个主要组成部分,其特征描述是解释高维群体记录的关键。反应变异性和协变性在刺激以及认知或行为状态发生变化时会呈现出可预测的变化,这为测试神经变异性模型的预测能力提供了契机。然而,对于将哪种模型用作群体水平分析的基础构建块,目前几乎没有达成共识,并且变异性模型通常被视为一个选择问题。我们研究了两种相互竞争的模型,即假设在尖峰产生时具有随机性的双随机泊松(DSP)模型,以及将变异性追溯到膜电位方差的整流高斯(RG)模型,以分析单神经元和成对反应统计的刺激依赖性调制。使用一对模型神经元,我们证明这两种模型预测出相似的单细胞统计结果。然而,DSP模型和RG模型对尖峰反应的联合统计有相互矛盾的预测。为了根据数据检验这些模型,我们构建了一个群体模型来模拟成对反应统计中与刺激变化相关的调制。我们使用来自猴子初级视觉皮层(V1)的单单元数据表明,虽然模型对方差的预测在定性上与实验数据相似,但只有RG模型的预测与联合统计结果相符。这些结果表明,使用类似泊松变异性的模型可能无法捕捉反应统计的重要特性。我们认为,对随机性进行膜电位水平建模提供了一种有效的策略来对相关性进行建模。神经变异性和协变性是皮层计算中令人困惑的方面。为了进行有效的解码和预测,神经群体中信息编码的模型取决于一个合适的变异性模型。我们的工作表明,成对反应统计中而非单细胞统计中与刺激相关的变化可以区分两种广泛使用的神经元变异性模型。将模型预测与神经元数据进行对比,为尖峰中的噪声源提供了线索,并为群体活动的统计模型提供了约束。

相似文献

1
Population activity statistics dissect subthreshold and spiking variability in V1.
J Neurophysiol. 2017 Jul 1;118(1):29-46. doi: 10.1152/jn.00931.2016. Epub 2017 Mar 15.
2
Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements.
J Neurosci. 2016 Jun 8;36(23):6225-41. doi: 10.1523/JNEUROSCI.4660-15.2016.
3
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex.
Neuron. 2016 Oct 19;92(2):530-543. doi: 10.1016/j.neuron.2016.09.038.
4
Inferring Cortical Variability from Local Field Potentials.
J Neurosci. 2016 Apr 6;36(14):4121-35. doi: 10.1523/JNEUROSCI.2502-15.2016.
5
Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality.
J Neurosci. 2019 Jun 12;39(24):4738-4759. doi: 10.1523/JNEUROSCI.3163-18.2019. Epub 2019 Apr 5.
6
Cortical state determines global variability and correlations in visual cortex.
J Neurosci. 2015 Jan 7;35(1):170-8. doi: 10.1523/JNEUROSCI.4994-13.2015.
7
Adaptation modulates correlated subthreshold response variability in visual cortex.
J Neurophysiol. 2017 Aug 1;118(2):1257-1269. doi: 10.1152/jn.00124.2017. Epub 2017 Jun 7.
9
Modeling stimulus-dependent variability improves decoding of population neural responses.
J Neural Eng. 2019 Oct 25;16(6):066018. doi: 10.1088/1741-2552/ab3a68.
10
Modeling the diverse effects of divisive normalization on noise correlations.
PLoS Comput Biol. 2023 Nov 30;19(11):e1011667. doi: 10.1371/journal.pcbi.1011667. eCollection 2023 Nov.

引用本文的文献

1
Representational untangling by the firing rate nonlinearity in V1 simple cells.
Elife. 2019 Sep 10;8:e43625. doi: 10.7554/eLife.43625.
2
Stimulus complexity shapes response correlations in primary visual cortex.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2723-2732. doi: 10.1073/pnas.1816766116. Epub 2019 Jan 28.

本文引用的文献

1
Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex.
Neuron. 2016 Oct 19;92(2):530-543. doi: 10.1016/j.neuron.2016.09.038.
2
Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements.
J Neurosci. 2016 Jun 8;36(23):6225-41. doi: 10.1523/JNEUROSCI.4660-15.2016.
3
Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.
Neuron. 2016 May 4;90(3):649-60. doi: 10.1016/j.neuron.2016.03.020. Epub 2016 Apr 14.
4
Demixed principal component analysis of neural population data.
Elife. 2016 Apr 12;5:e10989. doi: 10.7554/eLife.10989.
5
On the Structure of Neuronal Population Activity under Fluctuations in Attentional State.
J Neurosci. 2016 Feb 3;36(5):1775-89. doi: 10.1523/JNEUROSCI.2044-15.2016.
6
Origin and Function of Tuning Diversity in Macaque Visual Cortex.
Neuron. 2015 Nov 18;88(4):819-31. doi: 10.1016/j.neuron.2015.10.009. Epub 2015 Nov 5.
7
Attention stabilizes the shared gain of V4 populations.
Elife. 2015 Nov 2;4:e08998. doi: 10.7554/eLife.08998.
8
The Nature of Shared Cortical Variability.
Neuron. 2015 Aug 5;87(3):644-56. doi: 10.1016/j.neuron.2015.06.035. Epub 2015 Jul 23.
9
Ambiguity and nonidentifiability in the statistical analysis of neural codes.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6455-60. doi: 10.1073/pnas.1506400112. Epub 2015 May 1.
10
Neural constraints on learning.
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验