Bányai Mihály, Koman Zsombor, Orbán Gergő
Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, Budapest, Hungary; and
Computational Systems Neuroscience Lab, MTA Wigner Research Centre for Physics, Budapest, Hungary; and.
J Neurophysiol. 2017 Jul 1;118(1):29-46. doi: 10.1152/jn.00931.2016. Epub 2017 Mar 15.
Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity.
通过重复进行试验时波动的反应所测量的反应变异性是神经反应的一个主要组成部分,其特征描述是解释高维群体记录的关键。反应变异性和协变性在刺激以及认知或行为状态发生变化时会呈现出可预测的变化,这为测试神经变异性模型的预测能力提供了契机。然而,对于将哪种模型用作群体水平分析的基础构建块,目前几乎没有达成共识,并且变异性模型通常被视为一个选择问题。我们研究了两种相互竞争的模型,即假设在尖峰产生时具有随机性的双随机泊松(DSP)模型,以及将变异性追溯到膜电位方差的整流高斯(RG)模型,以分析单神经元和成对反应统计的刺激依赖性调制。使用一对模型神经元,我们证明这两种模型预测出相似的单细胞统计结果。然而,DSP模型和RG模型对尖峰反应的联合统计有相互矛盾的预测。为了根据数据检验这些模型,我们构建了一个群体模型来模拟成对反应统计中与刺激变化相关的调制。我们使用来自猴子初级视觉皮层(V1)的单单元数据表明,虽然模型对方差的预测在定性上与实验数据相似,但只有RG模型的预测与联合统计结果相符。这些结果表明,使用类似泊松变异性的模型可能无法捕捉反应统计的重要特性。我们认为,对随机性进行膜电位水平建模提供了一种有效的策略来对相关性进行建模。神经变异性和协变性是皮层计算中令人困惑的方面。为了进行有效的解码和预测,神经群体中信息编码的模型取决于一个合适的变异性模型。我们的工作表明,成对反应统计中而非单细胞统计中与刺激相关的变化可以区分两种广泛使用的神经元变异性模型。将模型预测与神经元数据进行对比,为尖峰中的噪声源提供了线索,并为群体活动的统计模型提供了约束。