Suppr超能文献

具有均匀和异质成分的一般网络上感染的传播与免疫

Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components.

作者信息

Liu Zonghua, Lai Ying-Cheng, Ye Nong

机构信息

Department of Mathematics, Arizona State University, Tempe, Arizona 85287, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031911. doi: 10.1103/PhysRevE.67.031911. Epub 2003 Mar 19.

Abstract

We consider the entire spectrum of architectures of general networks, ranging from being heterogeneous (scale-free) to homogeneous (random), and investigate the infection dynamics by using a three-state epidemiological model that does not involve the mechanism of self-recovery. This model is relevant to realistic situations such as the propagation of a flu virus or information over a social network. Our heuristic analysis and computations indicate that (1) regardless of the network architecture, there exists a substantial fraction of nodes that can never be infected and (2) heterogeneous networks are relatively more robust against spreads of infection as compared with homogeneous networks. We have also considered the problem of immunization for preventing wide spread of infection, with the result that targeted immunization is effective for heterogeneous networks.

摘要

我们考虑了一般网络的整个架构范围,从异构(无标度)到同构(随机),并使用一个不涉及自我恢复机制的三态流行病学模型来研究感染动态。该模型适用于流感病毒传播或社交网络上信息传播等现实情况。我们的启发式分析和计算表明:(1)无论网络架构如何,都存在相当一部分节点永远不会被感染;(2)与同构网络相比,异构网络对感染传播相对更具抗性。我们还考虑了预防感染广泛传播的免疫问题,结果表明靶向免疫对异构网络有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验