Ferreira Silvio C, Castellano Claudio, Pastor-Satorras Romualdo
Departamento de Física, Universidade Federal de Viçosa, 36571-000, Viçosa - MG, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041125. doi: 10.1103/PhysRevE.86.041125. Epub 2012 Oct 15.
Recent work has shown that different theoretical approaches to the dynamics of the susceptible-infected-susceptible (SIS) model for epidemics lead to qualitatively different estimates for the position of the epidemic threshold in networks. Here we present large-scale numerical simulations of the SIS dynamics on various types of networks, allowing the precise determination of the effective threshold for systems of finite size N. We compare quantitatively the numerical thresholds with theoretical predictions of the heterogeneous mean-field theory and of the quenched mean-field theory. We show that the latter is in general more accurate, scaling with N with the correct exponent, but often failing to capture the correct prefactor.
最近的研究表明,针对流行病的易感-感染-易感(SIS)模型动力学的不同理论方法,会导致对网络中流行阈值位置的定性不同估计。在此,我们展示了在各种类型网络上对SIS动力学的大规模数值模拟,从而能够精确确定有限规模N的系统的有效阈值。我们将数值阈值与非均匀平均场理论和淬火平均场理论的理论预测进行了定量比较。我们表明,后者通常更准确,以正确的指数随N缩放,但常常无法捕捉到正确的前置因子。