Suppr超能文献

双层铁路-局部区域出行网络中的疫情风险

Risks of an epidemic in a two-layered railway-local area traveling network.

作者信息

Ruan Zhongyuan, Hui Pakming, Lin Haiqing, Liu Zonghua

机构信息

1Department of Physics, East China Normal University, Shanghai, 200062 P.R. China.

2Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.

出版信息

Eur Phys J B. 2013;86(1):13. doi: 10.1140/epjb/e2012-30292-x. Epub 2013 Jan 21.

Abstract

In view of the huge investments into the construction of high speed rails systems in USA, Japan, and China, we present a two-layer traveling network model to study the risks that the railway network poses in case of an epidemic outbreak. The model consists of two layers with one layer representing the railway network and the other representing the local-area transportation subnetworks. To reveal the underlying mechanism, we also study a simplified model that focuses on how a major railway affects an epidemic. We assume that the individuals, when they travel, take on the shortest path to the destination and become non-travelers upon arrival. When an infection process co-evolves with the traveling dynamics, the railway serves to gather a crowd, transmit the disease, and spread infected agents to local area subnetworks. The railway leads to a faster initial increase in infected agents and a higher steady state infection, and thus poses risks; and frequent traveling leads to a more severe infection. These features revealed in simulations are in agreement with analytic results of a simplified version of the model.

摘要

鉴于美国、日本和中国在高铁系统建设方面投入巨大,我们提出了一个两层出行网络模型,以研究铁路网络在疫情爆发时所带来的风险。该模型由两层组成,一层代表铁路网络,另一层代表局部交通子网。为揭示潜在机制,我们还研究了一个简化模型,该模型重点关注一条主要铁路如何影响疫情。我们假设个体在出行时会选择前往目的地的最短路径,并在到达后成为非出行者。当感染过程与出行动态共同演变时,铁路起到聚集人群、传播疾病以及将感染源传播到局部子网的作用。铁路导致感染源的初始增长更快且稳态感染更高,从而带来风险;频繁出行会导致更严重的感染。模拟中揭示的这些特征与该模型简化版本的分析结果一致。

相似文献

10
Circuity analyses of HSR network and high-speed train paths in China.中国高铁网络与高速列车路径的迂回性分析
PLoS One. 2017 Sep 25;12(9):e0176005. doi: 10.1371/journal.pone.0176005. eCollection 2017.

本文引用的文献

1
Rewiring for adaptation.为适应而重新布线。
Physics (College Park Md). 2010 Feb 22;3(17). doi: 10.1103/Physics.3.17.
2
Thresholds for epidemic spreading in networks.网络中流行病传播的阈值。
Phys Rev Lett. 2010 Nov 19;105(21):218701. doi: 10.1103/PhysRevLett.105.218701. Epub 2010 Nov 17.
3
Epidemic spreading in evolving networks.演化网络中的疫情传播。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036112. doi: 10.1103/PhysRevE.82.036112. Epub 2010 Sep 24.
6
Effect of social group dynamics on contagion.社会群体动态对传染病传播的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 2):056107. doi: 10.1103/PhysRevE.81.056107. Epub 2010 May 25.
9
Effect of mobility in partially occupied complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016110. doi: 10.1103/PhysRevE.81.016110. Epub 2010 Jan 25.
10
Multiscale mobility networks and the spatial spreading of infectious diseases.多尺度移动性网络与传染病的空间传播。
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21484-9. doi: 10.1073/pnas.0906910106. Epub 2009 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验