Choplin Neil T, Zhou Qienyuan, Knighton Robert W
Laser Diagnostic Technologies, Inc., San Diego, California 92127-2402, USA.
Ophthalmology. 2003 Apr;110(4):719-25. doi: 10.1016/S0161-6420(02)01899-7.
Scanning laser polarimetry estimates retinal nerve fiber layer (RNFL) thickness through measurement of retardation of a polarized laser light passing through the naturally birefringent RNFL and cornea. The commercial instrument, the GDx Nerve Fiber Analyzer (Laser Diagnostic Technologies, Inc., San Diego, CA), uses an anterior segment compensator of fixed magnitude and slow polarization axis to eliminate the contribution of the cornea to the total signal. Previous studies have shown up to 30% of patients are not adequately compensated by this method. The aim of this study was to determine the effect of individualized anterior segment compensation using a newly designed variable compensator on estimates of retinal nerve fiber layer thickness compared with those as determined with the fixed compensator in the commercial device.
Comparative, observational case series.
Twenty-eight eyes from 14 normal participants and 24 eyes from 12 patients with bilateral glaucoma.
Using information derived from a scan of the macula, a newly designed variable anterior segment compensator for the GDx was set to neutralize anterior segment birefringence. Normal participants and patients with glaucoma underwent RNFL measurements using the standard (fixed) compensator and the variable compensator. The results were compared using Hotelling's generalized means test and Bonferroni's adjustment for multiple comparisons.
Standard GDx modulation and thickness parameters as determined with the fixed and variable compensators.
All thickness values were statistically significantly lower as determined with the variable compensator, with no discernible differences in any of the modulation parameters.
Individualized anterior segment compensation lowers the RNFL thickness values as determined by scanning laser polarimetry compared with those determined with the standard fixed compensator. This may narrow the normal range and increase the discriminating ability of scanning laser polarimetry between normal and disease. However, modulation is less affected, and the modulation parameters may thus prove more useful for distinguishing between normal and glaucoma.
扫描激光偏振仪通过测量穿过天然双折射的视网膜神经纤维层(RNFL)和角膜的偏振激光的延迟来估计RNFL厚度。商业仪器GDx神经纤维分析仪(激光诊断技术公司,加利福尼亚州圣地亚哥)使用固定大小和慢偏振轴的前段补偿器来消除角膜对总信号的贡献。先前的研究表明,高达30%的患者未通过此方法得到充分补偿。本研究的目的是确定与商业设备中使用的固定补偿器相比,使用新设计的可变补偿器进行个体化前段补偿对视网膜神经纤维层厚度估计的影响。
比较性观察病例系列。
14名正常参与者的28只眼和12名双侧青光眼患者的24只眼。
利用黄斑扫描获得的信息,将新设计的GDx可变前段补偿器设置为中和前段双折射。正常参与者和青光眼患者使用标准(固定)补偿器和可变补偿器进行RNFL测量。使用Hotelling广义均值检验和Bonferroni多重比较调整对结果进行比较。
使用固定和可变补偿器确定的标准GDx调制和厚度参数。
使用可变补偿器确定的所有厚度值在统计学上均显著降低,在任何调制参数中均无明显差异。
与使用标准固定补偿器确定的RNFL厚度值相比,个体化前段补偿降低了扫描激光偏振仪确定的RNFL厚度值。这可能会缩小正常范围,并提高扫描激光偏振仪区分正常与疾病的能力。然而,调制受影响较小,因此调制参数可能对区分正常与青光眼更有用。