Farstad M, Heltne J K, Rynning S E, Lund T, Mongstad A, Eliassen F, Husby P
Departments of Anaesthesia and Intensive Care and Heart Disease, University of Bergen, Haukeland University Hospital, Bergen, Norway.
Acta Anaesthesiol Scand. 2003 Apr;47(4):397-406. doi: 10.1034/j.1399-6576.2003.00103.x.
Hypothermic cardiopulmonary bypass (CPB) is associated with capillary fluid leak and edema generation which may be secondary to hemodilution, inflammation and hypothermia. We evaluated how hypothermia and different cooling strategies influenced the fluid extravasation rate during CPB.
Fourteen piglets were given 60 min normothermic CPB, followed by randomization to two groups: 1: rapid cooling (RC-group) ( approximately 15 min to 28 degrees C); 2: slow cooling (SC-group) ( approximately 60 min to 28 degrees C). Ringer's solution was used as CPB prime and for fluid supplementation. Fluid input/losses, plasma volume, colloid osmotic pressures (plasma, interstitial fluid), hematocrit, serum-proteins and total tissue water (TTW) were measured and fluid extravasation rates calculated.
Start of normothermic CPB resulted in a 25% hemodilution. During the first 5-10 min the fluid level of the reservoir fell markedly due to an intravascular volume loss necessitating fluid supplementation. Thereafter a steady state was reached with a constant fluid need of 0.14 +/- 0.04 ml kg-1 min-1. After start of cooling the fluid needs increased in the following 30 min to 0.91 +/- 0.11 ml kg-1 min-1 in the RC group (P < 0.001) and 0.63 +/- 0.10 ml kg-1 min-1 in the SC-group (P < 0.001) with no statistical between-group differences. Fluid extravasation rates after start of hypothermic CPB increased from 0.20 +/- 0.08 ml kg-1 min-1 to 0.71 +/- 0.13 (P < 0.01) and 0.62 +/- 0.13 ml kg-1 min-1 (P < 0.05) in the RC- and SC-groups, respectively, without any changes in degree of hemodilution. TTW increased in most tissues, whereas the intravascular albumin and protein masses remained constant with no between group differences.
Hypothermia increased fluid extravasation during CPB independent of cooling strategy. Intravascular albumin and protein masses remained constant. Since inflammatory fluid leakage usually results in protein rich exudates, our data with no net protein leakage may indicate that mechanisms other than inflammation could contribute to fluid extravasation during hypothermic CPB.
低温体外循环(CPB)与毛细血管液体渗漏和水肿形成有关,这可能继发于血液稀释、炎症和低温。我们评估了低温及不同降温策略如何影响CPB期间的液体外渗率。
14只仔猪先进行60分钟常温CPB,随后随机分为两组:1:快速降温(RC组)(约15分钟降至28℃);2:缓慢降温(SC组)(约60分钟降至28℃)。林格氏液用作CPB预充液及补液。测量液体出入量、血浆容量、胶体渗透压(血浆、组织间液)、血细胞比容、血清蛋白和总组织水(TTW),并计算液体外渗率。
常温CPB开始导致25%的血液稀释。在最初5 - 10分钟内,由于血管内容量丢失需要补液,储液器内液体水平显著下降。此后达到稳定状态,液体需求量恒定为0.14±0.04 ml·kg⁻¹·min⁻¹。开始降温后,在接下来30分钟内,液体需求量在RC组增加至0.91±0.11 ml·kg⁻¹·min⁻¹(P < 0.001),在SC组增加至0.63±0.10 ml·kg⁻¹·min⁻¹(P < 0.001),两组间无统计学差异。低温CPB开始后,液体外渗率在RC组从0.20±0.08 ml·kg⁻¹·min⁻¹增加至0.71±0.13(P < 0.01),在SC组增加至0.62±0.13 ml·kg⁻¹·min⁻¹(P < 0.05),血液稀释程度无任何变化。大多数组织的TTW增加,而血管内白蛋白和蛋白质量保持恒定,两组间无差异。
低温增加CPB期间的液体外渗,与降温策略无关。血管内白蛋白和蛋白质量保持恒定。由于炎症性液体渗漏通常导致富含蛋白质的渗出液,我们的数据显示无净蛋白质渗漏,这可能表明除炎症外的其他机制可能导致低温CPB期间的液体外渗。