Duan Yuhua, Reddy Boojala V B, Kaznessis Yiannis N
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455, USA.
Protein Sci. 2005 Feb;14(2):316-28. doi: 10.1110/ps.04941505.
Many protein-protein docking algorithms generate numerous possible complex structures with only a few of them resembling the native structure. The major challenge is choosing the near-native structures from the generated set. Recently it has been observed that the density of conserved residue positions is higher at the interface regions of interacting protein surfaces, except for antibody-antigen complexes, where a very low number of conserved positions is observed at the interface regions. In the present study we have used this observation to identify putative interacting regions on the surface of interacting partners. We studied 59 protein complexes, used previously as a benchmark data set for docking investigations. We computed conservation indices of residue positions on the surfaces of interacting proteins using available homologous sequences and used this information to filter out from 56% to 86% of generated docked models, retaining near-native structures for further evaluation. We used a reverse filter of conservation score to filter out the majority of nonnative antigen-antibody complex structures. For each docked model in the filtered subsets, we relaxed the conformation of the side chains by minimizing the energy with CHARMM, and then calculated the binding free energy using a generalized Born method and solvent-accessible surface area calculations. Using the free energy along with conservation information and other descriptors used in the literature for ranking docking solutions, such as shape complementarity and pair potentials, we developed a global ranking procedure that significantly improves the docking results by giving top ranks to near-native complex structures.
许多蛋白质-蛋白质对接算法会生成大量可能的复合物结构,其中只有少数与天然结构相似。主要挑战在于从生成的结构集中选择接近天然的结构。最近人们发现,除了抗体-抗原复合物在界面区域观察到的保守残基位置数量非常少之外,在相互作用的蛋白质表面的界面区域,保守残基位置的密度更高。在本研究中,我们利用这一观察结果来识别相互作用伙伴表面上的假定相互作用区域。我们研究了59个蛋白质复合物,这些复合物先前被用作对接研究的基准数据集。我们使用可用的同源序列计算相互作用蛋白质表面上残基位置的保守指数,并利用这些信息从生成的对接模型中筛选出56%至86%的模型,保留接近天然的结构以供进一步评估。我们使用保守得分的反向筛选来滤除大多数非天然的抗原-抗体复合物结构。对于过滤子集中的每个对接模型,我们通过使用CHARMM最小化能量来松弛侧链的构象,然后使用广义玻恩方法和溶剂可及表面积计算来计算结合自由能。利用自由能以及保守信息和文献中用于对接解决方案排名的其他描述符,如形状互补性和对势,我们开发了一种全局排名程序,通过将接近天然的复合物结构排在前列,显著改善了对接结果。