Glial cell-derived neurothrophic factor (GDNF) interacts with a cell surface receptor, GFRalpha1, that is linked via a glycosyl-phosphatidylinositol (GPI) lipid to the cell membrane. The neurotrophic activities of GDNF are mediated by binding to GFRalpha1 and further interaction of the GDNF-GFRalpha1 complex with a coreceptor tyrosine kinase encoded by the c-Ret protooncogene. There is also evidence for the existence of cell signaling by GDNF and GFRalpha1 in the absence of Ret. 2. To further delineate the Ret-dependent and -independent functions of GDNF, cellular internalization of GDNF and GFRalpha1 was examined in cells lines and primary neurons. 3. Relative to other GPI-anchored receptors, efficient endocytosis (approximately 30-40% of total surface-bound ligand internalized after 2 min) of GNDF and GFRalpha1 was observed in neuroblastoma and transfected-fibroblast cell lines that lack Ret. Primary hippocampal neurons from transgenic mice that express a wild-type GFRalpha1 together with a mutant, tyrosine kinase-inactive Ret also internalized GDNF efficiently (approximately 20% of total surface-bound ligand internalized after 2 min). We also observed a ligand dependence for GFRalpha1 internalization in the cell lines that lack Ret. Furthermore, a comparison in the presence and absence of Ret indicates that this coreceptor tyrosine kinase slows internalization at early time points. 4. The data suggest different mechanisms of internalization for GDNF-GFRalpha1 in the absence and presence of the Ret coreceptor.