Suppr超能文献

在使用分位数类别进行逻辑回归之前,使用局部加权散点平滑法(lowess)去除预测变量随时间的系统趋势。

Using lowess to remove systematic trends over time in predictor variables prior to logistic regression with quantile categories.

作者信息

Borkowf Craig B, Albert Paul S, Abnet Christian C

机构信息

National Cancer Institute, Center for Cancer Research, Cancer Prevention Studies Branch, 6116 Executive Blvd., Suite 705, MSC 8314, Bethesda, MD 20892-8314, USA.

出版信息

Stat Med. 2003 May 15;22(9):1477-93. doi: 10.1002/sim.1507.

Abstract

In case-control studies one may employ logistic regression to model the relationship between binary responses and continuous predictor variables that have been categorized by the empirical quartiles of the controls. Sometimes, however, systematic trends over time (or drifts) contaminate the laboratory measurements of predictor variables. In this paper we consider the use of locally weighted robust regression (lowess) to estimate and remove these systematic trends when the trends for the cases and controls have a common shape. One can then use the lowess adjusted data in the desired logistic regression model. We illustrate these methods with a case-control study that was designed to assess the risk of oesophageal cancer as a function of the quartile categories of sphinganine levels in the blood serum. Upon examination of the data, it was discovered that the sphinganine laboratory measurements were contaminated by a systematic trend, the magnitude of which depended only on the day of analysis. This trend needed to be removed before performing further analyses of the data. In addition, we present simulations to examine the use of lowess methods to estimate and remove various shapes of trends from contaminated predictor data before constructing logistic regression models with quartile categories. We found that using the trend-contaminated data tends to give attenuated parameter estimates and hence lower significance and power levels than using the uncontaminated data. Conversely, using appropriate lowess methods to adjust the data tends to give nearly unbiased parameter estimates, near nominal significance levels, and improved power.

摘要

在病例对照研究中,可以采用逻辑回归来对二元反应与连续预测变量之间的关系进行建模,这些连续预测变量已根据对照的经验四分位数进行了分类。然而,有时随时间的系统趋势(或漂移)会干扰预测变量的实验室测量值。在本文中,当病例组和对照组的趋势具有相同形状时,我们考虑使用局部加权稳健回归(lowess)来估计并消除这些系统趋势。然后,可以在所需的逻辑回归模型中使用经lowess调整后的数据。我们通过一项病例对照研究来说明这些方法,该研究旨在评估血清中鞘氨醇水平的四分位数类别与患食管癌风险之间的函数关系。在检查数据时,发现鞘氨醇的实验室测量值受到一种系统趋势的干扰,其大小仅取决于分析日期。在对数据进行进一步分析之前,需要消除这种趋势。此外,我们还进行了模拟,以检验在构建具有四分位数类别的逻辑回归模型之前,使用lowess方法从受污染的预测数据中估计并消除各种形状趋势的情况。我们发现,使用受趋势污染的数据往往会给出衰减的参数估计值,因此与使用未受污染的数据相比,显著性水平和检验效能更低。相反,使用适当的lowess方法调整数据往往会给出几乎无偏的参数估计值、接近标称的显著性水平以及更高的检验效能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验