Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Dr. 2101 McGavran-Greenberg Hall CB #7435, Chapel Hill, NC, 27599, USA.
Curr Environ Health Rep. 2017 Mar;4(1):79-88. doi: 10.1007/s40572-017-0125-4.
Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making.
We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure-response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Under a policy perspective, the analyst must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology.
测量误差通过对环境暴露对人群影响的估计产生偏差,从而威胁公共健康。定量方法可以纠正测量偏倚,从而改善公共卫生决策。
我们总结了传统和新兴的方法,以在标准视角下改善推断,在该视角下,研究者估计暴露-反应函数;以及政策视角,在该视角下,研究者直接估计拟议干预措施对人群的影响。在政策视角下,分析人员必须对影响暴露对结果的效应的因素的测量误差敏感,必须考虑政策是否针对真实或测量的暴露,并且可能需要越来越多地考虑同一政策或干预措施影响的两个或多个暴露的潜在相关测量误差。将测量误差的处理方法纳入这种政策视角将增加环境流行病学的影响力。