Suppr超能文献

Application of the Kohonen artificial neural network in the identification of proteinaceous binders in samples of panel painting using gas chromatography-mass spectrometry.

作者信息

Lletí R, Sarabia L A, Ortiz M C, Todeschini R, Colombini M P

机构信息

Department of Chemistry, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.

出版信息

Analyst. 2003 Mar;128(3):281-6. doi: 10.1039/b212509a.

Abstract

Historically, three types of proteinaceous matter--casein, egg and animal glue--were used as binders for pigments or as adhesives in easel and wall painting. The relative percentage content of alanine, glycine, valine, leucine, isoleucine, serine, tyrosine, phenylalanine, aspartic acid, glutamic acid, lysine, methionine, proline and hydroxyproline, as determined by GC-MS, is used for binder identification. In this paper we analyse the viability of a multivariate modelling using Kohonen's neural network to characterise the wood adhesive in 16 old samples from Italian panel paintings of the 12-16th centuries. As a training set we use the amino acid composition of 141 samples contributed by the Opificio delle Pietre Dure of Florence (Cultural Heritage Ministry, Italy). Of the 141 samples, 113 were used to train the Kohonen neural network and the remaining 28 as the evaluation set. A specificity and sensitivity of 100% was achieved in training and 92-100% in prediction depending on the assignation criteria employed. The neural network thus trained and evaluated was applied to the old samples, achieving identification of all of them. In addition, the map obtained for each amino acid provides relevant information as to its importance in the characterisation of the sample.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验