Marshall E C, Spiegelhalter D J
Department of Epidemiology and Public Health, Imperial College of Science, Technology and Medicine, Norfolk Place, London W2 1PG, UK.
Stat Med. 2003 May 30;22(10):1649-60. doi: 10.1002/sim.1403.
When fitting complex hierarchical disease mapping models, it can be important to identify regions that diverge from the assumed model. Since full leave-one-out cross-validatory assessment is extremely time-consuming when using Markov chain Monte Carlo (MCMC) estimation methods, Stern and Cressie consider an importance sampling approximation. We show that this can be improved upon through replication of both random effects and data. Our approach is simple to apply, entirely generic, and may aid the criticism of any Bayesian hierarchical model.
在拟合复杂的分层疾病映射模型时,识别与假设模型不同的区域可能很重要。由于使用马尔可夫链蒙特卡罗(MCMC)估计方法时,完全留一法交叉验证评估极其耗时,斯特恩和克雷斯考虑了重要性抽样近似。我们表明,通过对随机效应和数据进行复制可以改进这一点。我们的方法易于应用,完全通用,可能有助于对任何贝叶斯分层模型进行评判。