对犯罪的社会与空间邻近性进行建模:邻里间的家庭暴力和性暴力

Modeling the Social and Spatial Proximity of Crime: Domestic and Sexual Violence Across Neighborhoods.

作者信息

Kelling Claire, Graif Corina, Korkmaz Gizem, Haran Murali

机构信息

330B Thomas Building, University Park, PA 16802.

Department of Statistics, Pennsylvania State University, University Park, PA.

出版信息

J Quant Criminol. 2021 Jun;37(2):481-516. doi: 10.1007/s10940-020-09454-w. Epub 2020 Mar 30.

Abstract

OBJECTIVES

Our goal is to understand the social dynamics affecting domestic and sexual violence in urban areas by investigating the role of connections between area nodes, or communities. We use innovative methods adapted from spatial statistics to investigate the importance of social proximity measured based on connectedness pathways between area nodes. In doing so, we seek to extend the standard treatment in the neighborhoods and crime literature of areas like census blocks as independent analytical units or as interdependent primarily due to geographic proximity.

METHODS

In this paper, we develop techniques to incorporate two types of proximity, geographic proximity and commuting proximity in spatial generalized linear mixed models (SGLMM) in order to estimate domestic and sexual violence in Detroit, Michigan and Arlington County, Virginia. Analyses are based on three types of CAR models (the Besag, York, and Mollié (BYM), Leroux, and the sparse SGLMM models) and two types of SAR models (the spatial lag and spatial error models) to examine how results vary with different model assumptions. We use data from local and federal sources such as the Police Data Initiative and American Community Survey.

RESULTS

Analyses show that incorporating information on commuting ties, a non-spatially bounded form of social proximity, to spatial models contributes to better deviance information criteria (DIC) scores (a metric which explicitly accounts for model fit and complexity) in Arlington for sexual and domestic crime as well as overall crime. In Detroit, the fit is improved only for overall crime. The distinctions in model fit are less pronounced when using cross-validated mean absolute error (MAE) as a comparison criteria.

CONCLUSION

Overall, the results indicate variations across crime type, urban contexts, and modeling approaches. Nonetheless, in important contexts, commuting ties among neighborhoods are observed to greatly improve our understanding of urban crime. If such ties contribute to the transfer of norms, social support, resources, and behaviors between places, they may then transfer also the effects of crime prevention efforts.

摘要

目标

我们的目标是通过调查区域节点或社区之间联系的作用,来了解影响城市地区家庭暴力和性暴力的社会动态。我们采用从空间统计中改编的创新方法,来研究基于区域节点之间连通路径所衡量的社会 proximity 的重要性。在此过程中,我们试图扩展邻里与犯罪文献中对诸如普查街区等区域的标准处理方式,这些区域通常被视为独立的分析单位,或者主要由于地理 proximity 而相互依存。

方法

在本文中,我们开发了一些技术,将地理 proximity 和通勤 proximity 这两种 proximity 纳入空间广义线性混合模型(SGLMM),以估计密歇根州底特律市和弗吉尼亚州阿灵顿县的家庭暴力和性暴力情况。分析基于三种类型的 CAR 模型(贝萨格、约克和莫利(BYM)模型、勒鲁模型以及稀疏 SGLMM 模型)和两种类型的 SAR 模型(空间滞后模型和空间误差模型),以检验结果如何随不同的模型假设而变化。我们使用来自地方和联邦来源的数据,如警方数据倡议和美国社区调查。

结果

分析表明,将通勤关系信息(一种非空间界定的社会 proximity 形式)纳入空间模型,有助于在阿灵顿提高性犯罪、家庭暴力犯罪以及总体犯罪的偏差信息准则(DIC)得分(一种明确考虑模型拟合和复杂性的指标)。在底特律,仅总体犯罪的拟合情况得到改善。当使用交叉验证平均绝对误差(MAE)作为比较标准时,模型拟合的差异不太明显。

结论

总体而言,结果表明不同犯罪类型、城市背景和建模方法存在差异。尽管如此,在重要背景下,观察到邻里之间的通勤关系能极大地增进我们对城市犯罪的理解。如果这些关系有助于规范、社会支持、资源和行为在不同地方之间的传递,那么它们也可能传递预防犯罪努力的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索