Suppr超能文献

Biomimetic recognition and immunochemical assay of ligand binding to collagen.

作者信息

Vaidyanathan Jayalakshmi, Chinnaswamy Kasinathan, Vaidyanathan Tritala K

机构信息

Department of Restorative Dentistry, NJ Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.

出版信息

J Adhes Dent. 2003 Spring;5(1):7-17.

Abstract

PURPOSE

The objectives of this investigation were to analyze the adhesive interactions between type 1 collagen and two hydrophilic monomer primers (ligands) for dentin bonding through computer modeling and a novel immunochemical binding assay method.

MATERIALS AND METHODS

The hydrophilic monomers studied included 2-hydroxyethyl methacrylate (HEMA) and 2-acryloyloxyethyl phosphate (PA). For computer modeling studies, a triple helical model structure of collagen fibril extracted from a public domain Protein Data Bank was used. The ligand conformations were modeled and optimized by Sybyl, and their interactions with the triple helical collagen structure in a solvent environment of water were simulated by AutoDock software. The effect of ligand binding to subsequent monoclonal antibody binding was also studied using an immunochemical binding assay method developed by us. The computer simulation results and binding assay results were analyzed for relationships pertinent to collagen-ligand interaction in bonding of dentin primers to demineralized dentin.

RESULTS

Computer docking results indicate that ligand binding to collagen is favored to occur at cavity sites on the collagen molecular surfaces, where steric and electrostatic effects may play a critical role in mediating van der Waals and Coulombic interactions between ligand and receptor molecules. Prior ligand exposure of collagen reduces subsequent antibody binding during in vitro experiments. Differences in antibody binding were observed both as a function of ligand type and its concentration.

CONCLUSION

Both steric complementarity and electrostatic complementarity conditions were observed in the docking site selection. Under conditions of ligand binding, antibody binding is diminished as a function of ligand structure and its concentration. The results suggest that approaches combining computer modeling and in vitro binding assay methods are powerful tools in evaluating dentinal adhesion at the atomic and/or molecular level.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验