Retout Sylvie, Mentré France
INSERM U436, Département d'Epidémiologie, Biostatistique et de Recherche Clinique, Hôpital Bichat-Claude Bernard, Paris, France.
J Biopharm Stat. 2003 May;13(2):209-27. doi: 10.1081/BIP-120019267.
We extend the development of the expression of the Fisher information matrix in nonlinear mixed effects models for designs evaluation. We consider the dependence of the marginal variance of the observations with the mean parameters and assume an heteroscedastic variance error model. Complex models with interoccasions variability and parameters quantifying the influence of covariates are introduced. Two methods using a Taylor expansion of the model around the expectation of the random effects or a simulated value, using then Monte Carlo integration, are proposed and compared. Relevance of the resulting standard errors is investigated in a simulation study with NONMEM.
我们扩展了用于设计评估的非线性混合效应模型中费希尔信息矩阵表达式的发展。我们考虑观测值的边际方差与均值参数的相关性,并假设存在异方差误差模型。引入了具有场合间变异性以及量化协变量影响的参数的复杂模型。提出并比较了两种方法,一种是围绕随机效应的期望对模型进行泰勒展开,另一种是围绕模拟值进行泰勒展开,然后使用蒙特卡罗积分。在使用NONMEM进行的模拟研究中考察了所得标准误差的相关性。