Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, Université de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, 46 allée d'Italie, 69007, Lyon, France.
Inria Team Dracula, Inria Center Grenoble Rhône-Alpes, Lyon, France.
BMC Bioinformatics. 2021 Oct 4;22(1):478. doi: 10.1186/s12859-021-04373-4.
Nonlinear mixed effects models provide a way to mathematically describe experimental data involving a lot of inter-individual heterogeneity. In order to assess their practical identifiability and estimate confidence intervals for their parameters, most mixed effects modelling programs use the Fisher Information Matrix. However, in complex nonlinear models, this approach can mask practical unidentifiabilities.
Herein we rather propose a multistart approach, and use it to simplify our model by reducing the number of its parameters, in order to make it identifiable. Our model describes several cell populations involved in the in vitro differentiation of chicken erythroid progenitors grown in the same environment. Inter-individual variability observed in cell population counts is explained by variations of the differentiation and proliferation rates between replicates of the experiment. Alternatively, we test a model with varying initial condition.
We conclude by relating experimental variability to precise and identifiable variations between the replicates of the experiment of some model parameters.
非线性混合效应模型为涉及大量个体间异质性的实验数据提供了一种数学描述方法。为了评估其实际可识别性并估计其参数的置信区间,大多数混合效应建模程序使用 Fisher 信息矩阵。然而,在复杂的非线性模型中,这种方法可能掩盖实际的不可识别性。
在此,我们提出了一种多启动方法,并使用该方法通过减少模型的参数数量来简化模型,以使其可识别。我们的模型描述了在相同环境中生长的鸡红细胞祖细胞体外分化过程中涉及的多个细胞群体。通过实验重复之间的分化和增殖速率的变化来解释细胞群体计数中观察到的个体间变异性。或者,我们测试了一个具有变化初始条件的模型。
我们通过将实验变异性与模型参数在实验重复之间的精确和可识别变化联系起来,得出结论。