Suppr超能文献

首个链球菌噬菌体C1的基因组序列。

Genomic sequence of C1, the first streptococcal phage.

作者信息

Nelson Daniel, Schuch Raymond, Zhu Shiwei, Tscherne Donna M, Fischetti Vincent A

机构信息

Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, USA.

出版信息

J Bacteriol. 2003 Jun;185(11):3325-32. doi: 10.1128/JB.185.11.3325-3332.2003.

Abstract

C(1), a lytic bacteriophage infecting group C streptococci, is one of the earliest-isolated phages, and the method of bacterial classification known as phage typing was defined by using this bacteriophage. We present for the first time a detailed analysis of this phage by use of electron microscopy, protein profiling, and complete nucleotide sequencing. This virus belongs to the Podoviridae family of phages, all of which are characterized by short, noncontractile tails. The C(1) genome consists of a linear double-stranded DNA molecule of 16,687 nucleotides with 143-bp inverted terminal repeats. We have assigned functions to 9 of 20 putative open reading frames based on experimental substantiation or bioinformatic analysis. Their products include DNA polymerase, holin, lysin, major capsid, head-tail connector, neck appendage, and major tail proteins. Additionally, we found one intron belonging to the HNH endonuclease family interrupting the apparent lysin gene, suggesting a potential splicing event yielding a functional lytic enzyme. Examination of the C(1) DNA polymerase suggests that this phage utilizes a protein-primed mechanism of replication, which is prominent in the phi29-like members of Podoviridae. Consistent with this evidence, we experimentally determined that terminal proteins are covalently attached to both 5' termini, despite the fact that no homology to known terminal proteins could be elucidated in any of our open reading frames. Likewise, comparative genomics revealed no close evolutionary matches, suggesting that the C(1) bacteriophage is a unique member of the Podoviridae.

摘要

C(1)是一种感染C组链球菌的裂解性噬菌体,是最早分离出的噬菌体之一,利用这种噬菌体定义了称为噬菌体分型的细菌分类方法。我们首次通过电子显微镜、蛋白质谱分析和全核苷酸测序对这种噬菌体进行了详细分析。这种病毒属于噬菌体的短尾噬菌体科,其特征均为短的、不可收缩的尾部。C(1)基因组由一个16,687个核苷酸的线性双链DNA分子组成,带有143 bp的反向末端重复序列。基于实验证实或生物信息学分析,我们已为20个推定的开放阅读框中的9个赋予了功能。它们的产物包括DNA聚合酶、穿孔素、溶菌酶、主要衣壳蛋白、头尾连接蛋白、颈部附属物和主要尾部蛋白。此外,我们发现一个属于HNH核酸内切酶家族的内含子中断了明显的溶菌酶基因,提示可能存在剪接事件产生功能性裂解酶。对C(1) DNA聚合酶的研究表明,这种噬菌体利用蛋白质引发的复制机制,这在短尾噬菌体科的phi29样成员中很突出。与这一证据一致,我们通过实验确定末端蛋白共价连接到两个5'末端,尽管在我们的任何开放阅读框中都未发现与已知末端蛋白的同源性。同样,比较基因组学未发现密切的进化匹配,表明C(1)噬菌体是短尾噬菌体科的独特成员。

相似文献

1
Genomic sequence of C1, the first streptococcal phage.
J Bacteriol. 2003 Jun;185(11):3325-32. doi: 10.1128/JB.185.11.3325-3332.2003.
2
Characterization and genomic analysis of phage asccphi28, a phage of the family Podoviridae infecting Lactococcus lactis.
Appl Environ Microbiol. 2008 Jun;74(11):3453-60. doi: 10.1128/AEM.02379-07. Epub 2008 Apr 4.
3
Comparative genomic analysis of Lactococcus garvieae phage WP-2, a new member of Picovirinae subfamily of Podoviridae.
Gene. 2014 Nov 10;551(2):222-9. doi: 10.1016/j.gene.2014.08.060. Epub 2014 Aug 29.
6
Biology and genome sequence of Streptococcus mutans phage M102AD.
Appl Environ Microbiol. 2012 Apr;78(7):2264-71. doi: 10.1128/AEM.07726-11. Epub 2012 Jan 27.
7
KSY1, a lactococcal phage with a T7-like transcription.
Virology. 2007 Aug 15;365(1):1-9. doi: 10.1016/j.virol.2007.03.044. Epub 2007 Apr 30.
8
Complete genomic sequence of bacteriophage phiEcoM-GJ1, a novel phage that has myovirus morphology and a podovirus-like RNA polymerase.
Appl Environ Microbiol. 2008 Jan;74(2):516-25. doi: 10.1128/AEM.00990-07. Epub 2007 Nov 26.
10
Characterization of phiCFP-1, a virulent bacteriophage specific for Citrobacter freundii.
J Med Virol. 2016 May;88(5):895-905. doi: 10.1002/jmv.24401. Epub 2015 Oct 23.

引用本文的文献

1
Isolation and characterization of bacteriophages specific to subspecies and evaluation of efficacy .
Front Microbiol. 2024 Oct 28;15:1448958. doi: 10.3389/fmicb.2024.1448958. eCollection 2024.
2
The virtue of training: extending phage host spectra against vancomycin-resistant strains using the Appelmans method.
Antimicrob Agents Chemother. 2024 May 2;68(5):e0143923. doi: 10.1128/aac.01439-23. Epub 2024 Apr 9.
4
Endolysins against Streptococci as an antibiotic alternative.
Front Microbiol. 2022 Aug 2;13:935145. doi: 10.3389/fmicb.2022.935145. eCollection 2022.
5
Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage.
Sci Adv. 2022 May 6;8(18):eabj9670. doi: 10.1126/sciadv.abj9670. Epub 2022 May 4.
6
The Chronic Wound Phageome: Phage Diversity and Associations with Wounds and Healing Outcomes.
Microbiol Spectr. 2022 Jun 29;10(3):e0277721. doi: 10.1128/spectrum.02777-21. Epub 2022 Apr 18.
7
Integrative Longitudinal Analysis of Metabolic Phenotype and Microbiota Changes During the Development of Obesity.
Front Cell Infect Microbiol. 2021 Aug 3;11:671926. doi: 10.3389/fcimb.2021.671926. eCollection 2021.
8
Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors.
Comput Struct Biotechnol J. 2021 Jul 14;19:4018-4031. doi: 10.1016/j.csbj.2021.07.011. eCollection 2021.
9
The Bacteriophages of .
Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0059-2018.
10
Countermeasures Defeat a Virulent Bacteriophage.
Viruses. 2019 Jan 10;11(1):48. doi: 10.3390/v11010048.

本文引用的文献

1
Further Investigations on the Nature of Ultra-Microscopic Viruses and their Cultivation.
J Hyg (Lond). 1936 Jun;36(2):204-35. doi: 10.1017/s0022172400043606.
3
Studies on Hemolytic Streptococci: I. Methods of Classification.
J Bacteriol. 1936 Apr;31(4):423-37. doi: 10.1128/jb.31.4.423-437.1936.
6
A bacteriolytic agent that detects and kills Bacillus anthracis.
Nature. 2002 Aug 22;418(6900):884-9. doi: 10.1038/nature01026.
7
Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches.
J Bacteriol. 2002 Sep;184(17):4891-905. doi: 10.1128/JB.184.17.4891-4905.2002.
8
The Phage Proteomic Tree: a genome-based taxonomy for phage.
J Bacteriol. 2002 Aug;184(16):4529-35. doi: 10.1128/JB.184.16.4529-4535.2002.
9
Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10078-83. doi: 10.1073/pnas.152298499. Epub 2002 Jul 16.
10
Bacteriophage control of bacterial virulence.
Infect Immun. 2002 Aug;70(8):3985-93. doi: 10.1128/IAI.70.8.3985-3993.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验