Blank Michael E, Ehmke Heimo
Institut für Vegetative Physiologie und Pathophysiologie, Universität Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany.
J Physiol. 2003 Jul 15;550(Pt 2):419-29. doi: 10.1113/jphysiol.2003.040113. Epub 2003 May 16.
Recent studies have suggested that aquaporin-1 (AQP1) as well as the HCO3(-)-Cl- transporter may be involved in CO2 transport across biological membranes, but the physiological importance of this route of gas transport remained unknown. We studied CO2 transport in human red blood cell ghosts at physiological temperatures (37 degrees C). Replacement of inert with CO2-containing gas above a stirred cell suspension caused an outside-to-inside directed CO2 gradient and generated a rapid biphasic intracellular acidification. The gradient of the acidifying gas was kept small to favour high affinity entry of CO2 passing the membrane. All rates of acidification except that of the approach to physicochemical equilibrium of the uncatalysed reaction were restricted to the intracellular environment. Inhibition of carbonic anhydrase (CA) demonstrated that CO2-induced acidification required the catalytic activity of CA. Blockade of the function of either AQP1 (by HgCl2 at 65 microM) or the HCO3(-)-Cl- transporter (by DIDS at 15 microM) completely prevented fast acidification. These data indicate that, at low chemical gradients for CO2, nearly the entire CO2 transport across the red cell membrane is mediated by AQP1 and the HCO3--Cl- transporter. Therefore, these proteins may function as high affinity sites for CO2 transport across the erythrocyte membrane.
近期研究表明,水通道蛋白-1(AQP1)以及HCO₃⁻-Cl⁻转运体可能参与二氧化碳跨生物膜的转运,但这种气体转运途径的生理重要性尚不清楚。我们在生理温度(37℃)下研究了人红细胞血影中的二氧化碳转运。在搅拌的细胞悬液上方用含二氧化碳的气体替代惰性气体,会产生由外向内的二氧化碳梯度,并导致细胞内迅速出现双相酸化。酸化气体的梯度保持较小,以利于二氧化碳以高亲和力通过膜进入细胞。除了未催化反应达到物理化学平衡的阶段外,所有酸化速率都局限于细胞内环境。抑制碳酸酐酶(CA)表明,二氧化碳诱导的酸化需要CA的催化活性。阻断AQP1(用65微摩尔的HgCl₂)或HCO₃⁻-Cl⁻转运体(用15微摩尔的DIDS)的功能,可完全阻止快速酸化。这些数据表明,在二氧化碳的化学梯度较低时,几乎所有二氧化碳跨红细胞膜的转运都是由AQP1和HCO₃⁻-Cl⁻转运体介导的。因此,这些蛋白质可能作为二氧化碳跨红细胞膜转运的高亲和力位点发挥作用。