Huang Erich, Ishida Seiichi, Pittman Jennifer, Dressman Holly, Bild Andrea, Kloos Mark, D'Amico Mark, Pestell Richard G, West Mike, Nevins Joseph R
Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA.
Nat Genet. 2003 Jun;34(2):226-30. doi: 10.1038/ng1167.
High-density DNA microarrays measure expression of large numbers of genes in one assay. The ability to find underlying structure in complex gene expression data sets and rigorously test association of that structure with biological conditions is essential to developing multi-faceted views of the gene activity that defines cellular phenotype. We sought to connect features of gene expression data with biological hypotheses by integrating 'metagene' patterns from DNA microarray experiments in the characterization and prediction of oncogenic phenotypes. We applied these techniques to the analysis of regulatory pathways controlled by the genes HRAS (Harvey rat sarcoma viral oncogene homolog), MYC (myelocytomatosis viral oncogene homolog) and E2F1, E2F2 and E2F3 (encoding E2F transcription factors 1, 2 and 3, respectively). The phenotypic models accurately predict the activity of these pathways in the context of normal cell proliferation. Moreover, the metagene models trained with gene expression patterns evoked by ectopic production of Myc or Ras proteins in primary tissue culture cells properly predict the activity of in vivo tumor models that result from deregulation of the MYC or HRAS pathways. We conclude that these gene expression phenotypes have the potential to characterize the complex genetic alterations that typify the neoplastic state, whether in vitro or in vivo, in a way that truly reflects the complexity of the regulatory pathways that are affected.
高密度DNA微阵列可在一次检测中测量大量基因的表达。在复杂的基因表达数据集中找到潜在结构,并严格测试该结构与生物学条件的关联,对于形成定义细胞表型的基因活性的多方面观点至关重要。我们试图通过整合DNA微阵列实验中的“元基因”模式,将基因表达数据的特征与生物学假设联系起来,以表征和预测致癌表型。我们将这些技术应用于分析由HRAS(哈维大鼠肉瘤病毒癌基因同源物)、MYC(髓细胞瘤病毒癌基因同源物)以及E2F1、E2F2和E2F3(分别编码E2F转录因子1、2和3)所控制的调控途径。这些表型模型能在正常细胞增殖的背景下准确预测这些途径的活性。此外,用原代组织培养细胞中Myc或Ras蛋白异位产生所引发的基因表达模式训练得到的元基因模型,能够正确预测因MYC或HRAS途径失调而导致的体内肿瘤模型的活性。我们得出结论,这些基因表达表型有潜力以一种真正反映受影响调控途径复杂性的方式,来表征无论是体外还是体内典型肿瘤状态的复杂基因改变。