Heinze Georg, Ploner Meinhard
Department of Medical Computer Sciences, University of Vienna, Spitalgasse 23, A-1090 Vienna, Austria.
Comput Methods Programs Biomed. 2003 Jun;71(2):181-7. doi: 10.1016/s0169-2607(02)00088-3.
When analyzing clinical data with binary outcomes, the parameter estimates and consequently the odds ratio estimates of a logistic model sometimes do not converge to finite values. This phenomenon is due to special conditions in a data set and known as 'separation'. Statistical software packages for logistic regression using the maximum likelihood method cannot appropriately deal with this problem. A new procedure to solve the problem has been proposed by Heinze and Schemper (Stat. Med. 21 (2002) pp. 2409-3419). It has been shown that unlike the standard maximum likelihood method, this method always leads to finite parameter estimates. We developed a SAS macro and an SPLUS library to make this method available from within one of these widely used statistical software packages. Our programs are also capable of performing interval estimation based on profile penalized log likelihood (PPL) and of plotting the PPL function as was suggested by Heinze and Schemper (Stat. Med. 21 (2002) pp. 2409-3419).
在分析具有二元结局的临床数据时,逻辑模型的参数估计以及相应的优势比估计有时不会收敛到有限值。这种现象是由于数据集中的特殊条件导致的,被称为“分离”。使用最大似然法的逻辑回归统计软件包无法妥善处理这个问题。Heinze和Schemper(《统计医学》21(2002年)第2409 - 3419页)提出了一种解决该问题的新方法。已经证明,与标准最大似然法不同,这种方法总能得到有限的参数估计。我们开发了一个SAS宏和一个SPLUS库,以便在这些广泛使用的统计软件包之一中使用这种方法。我们的程序还能够基于轮廓惩罚对数似然(PPL)进行区间估计,并能像Heinze和Schemper(《统计医学》21(2002年)第2409 - 3419页)所建议的那样绘制PPL函数。