Barry S C, Brooks S P, Catchpole E A, Morgan B J T
Bureau of Rural Sciences, Agriculture, Fisheries, and Forestry Australia Canberra, ACT 2600, Australia.
Biometrics. 2003 Mar;59(1):54-65. doi: 10.1111/1541-0420.00007.
We show how random terms, describing both yearly variation and overdispersion, can easily be incorporated into models for mark-recovery data, through the use of Bayesian methods. For recovery data on lapwings, we show that the incorporation of the random terms greatly improves the goodness of fit. Omitting the random terms can lead to overestimation of the significance of weather on survival, and overoptimistic prediction intervals in simulations of future population behavior. Random effects models provide a natural way of modeling overdispersion-which is more satisfactory than the standard classical approach of scaling up all standard errors by a uniform inflation factor. We compare models by means of Bayesian p-values and the deviance information criterion (DIC).
我们展示了如何通过使用贝叶斯方法,将描述年度变化和过度离散的随机项轻松纳入标记重捕数据模型。对于凤头麦鸡的重捕数据,我们表明纳入随机项极大地改善了拟合优度。省略随机项可能导致对天气对生存影响的显著性估计过高,以及在未来种群行为模拟中预测区间过于乐观。随机效应模型提供了一种对过度离散进行建模的自然方法,这比通过统一膨胀因子放大所有标准误差的标准经典方法更令人满意。我们通过贝叶斯p值和偏差信息准则(DIC)比较模型。