Suppr超能文献

使用后验预测分布对不完全数据进行贝叶斯模型选择。

Bayesian model selection for incomplete data using the posterior predictive distribution.

作者信息

Daniels Michael J, Chatterjee Arkendu S, Wang Chenguang

机构信息

Department of Statistics, University of Florida, Gainesville, FL 32611, USA.

出版信息

Biometrics. 2012 Dec;68(4):1055-63. doi: 10.1111/j.1541-0420.2012.01766.x. Epub 2012 May 2.

Abstract

We explore the use of a posterior predictive loss criterion for model selection for incomplete longitudinal data. We begin by identifying a property that most model selection criteria for incomplete data should consider. We then show that a straightforward extension of the Gelfand and Ghosh (1998, Biometrika, 85, 1-11) criterion to incomplete data has two problems. First, it introduces an extra term (in addition to the goodness of fit and penalty terms) that compromises the criterion. Second, it does not satisfy the aforementioned property. We propose an alternative and explore its properties via simulations and on a real dataset and compare it to the deviance information criterion (DIC). In general, the DIC outperforms the posterior predictive criterion, but the latter criterion appears to work well overall and is very easy to compute unlike the DIC in certain classes of models for missing data.

摘要

我们探讨将后验预测损失准则用于不完全纵向数据的模型选择。我们首先确定一个大多数不完全数据的模型选择标准应考虑的属性。然后我们表明,将Gelfand和Ghosh(1998年,《生物统计学》,85卷,1 - 11页)的准则直接扩展到不完全数据存在两个问题。首先,它引入了一个额外的项(除了拟合优度和惩罚项之外),这损害了该准则。其次,它不满足上述属性。我们提出了一种替代方法,并通过模拟和一个真实数据集探索其属性,还将其与偏差信息准则(DIC)进行比较。一般来说,DIC优于后验预测准则,但后验预测准则总体上似乎效果良好,并且与某些缺失数据模型类中的DIC不同,它非常易于计算。

相似文献

4
Variable selection for semiparametric mixed models in longitudinal studies.纵向研究中半参数混合模型的变量选择
Biometrics. 2010 Mar;66(1):79-88. doi: 10.1111/j.1541-0420.2009.01240.x. Epub 2009 Apr 13.
5
Goodness-of-fit diagnostics for Bayesian hierarchical models.贝叶斯层次模型的拟合优度诊断
Biometrics. 2012 Mar;68(1):156-64. doi: 10.1111/j.1541-0420.2011.01668.x. Epub 2011 Nov 3.
8
Comparing DIC and WAIC for multilevel models with missing data.比较缺失数据的多层模型中的 DIC 和 WAIC。
Behav Res Methods. 2024 Apr;56(4):2731-2750. doi: 10.3758/s13428-023-02231-0. Epub 2023 Oct 20.
9
Determining the effective sample size of a parametric prior.确定参数先验的有效样本量。
Biometrics. 2008 Jun;64(2):595-602. doi: 10.1111/j.1541-0420.2007.00888.x. Epub 2007 Aug 30.
10
A latent-class mixture model for incomplete longitudinal Gaussian data.用于不完全纵向高斯数据的潜在类别混合模型。
Biometrics. 2008 Mar;64(1):96-105. doi: 10.1111/j.1541-0420.2007.00837.x. Epub 2007 Jun 30.

引用本文的文献

2
Bayesian Criterion Based Variable Selection.基于贝叶斯准则的变量选择
J R Stat Soc Ser C Appl Stat. 2021 Aug;70(4):835-857. doi: 10.1111/rssc.12488. Epub 2021 Aug 7.

本文引用的文献

2
Bayesian model selection using test statistics.使用检验统计量的贝叶斯模型选择
J R Stat Soc Series B Stat Methodol. 2008 Oct 14;71(1):143-158. doi: 10.1111/j.1467-9868.2008.00678.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验