Jacobs A H, Li H, Winkeler A, Hilker R, Knoess C, Rüger A, Galldiks N, Schaller B, Sobesky J, Kracht L, Monfared P, Klein M, Vollmar S, Bauer B, Wagner R, Graf R, Wienhard K, Herholz K, Heiss W D
Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Gleuelerstrasse 50, 50931, Cologne, Germany.
Eur J Nucl Med Mol Imaging. 2003 Jul;30(7):1051-65. doi: 10.1007/s00259-003-1202-5. Epub 2003 May 23.
Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and "phenotyping" of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed.
正电子发射断层扫描(PET)能够对人和动物体内的生理、代谢及分子过程进行非侵入性评估。探测器技术的进步使PET的空间分辨率有了显著提高(1-2毫米),首次能够对小鼠等小型实验动物进行研究。随着放射化学和示踪技术的发展,多种内源性表达和外源性导入的基因可通过PET进行分析。这开创了令人兴奋且发展迅速的分子成像领域,旨在对动物模型和人体正常及病变细胞中感兴趣的生物过程进行非侵入性定位。分子成像的主要且最引人入胜的优势在于能够对同一实验对象中给定分子事件随时间进行动力学分析。这将使我们能够在不同疾病阶段、特定病理生理刺激下以及治疗干预后,对人类疾病动物模型进行非侵入性表征和“表型分析”。体内成像分子事件的潜在广泛应用涵盖细胞生物学、生物化学、基因/蛋白质功能与调控、信号转导、转录调控以及转基因动物表征等研究领域。最重要的是,分子成像对于潜在分子治疗靶点的识别、新治疗策略的开发以及将其成功应用于临床都将具有重大意义。在此,本文综述了PET分子成像在神经科学研究中的应用潜力,特别关注神经退行性变和神经肿瘤学。