Suppr超能文献

I-I 和 E-I 网络中γ振荡的发放率模型。

Firing rate models for gamma oscillations in I-I and E-I networks.

机构信息

Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.

Center for Neural Science, New York University, New York, NY, USA.

出版信息

J Comput Neurosci. 2024 Nov;52(4):247-266. doi: 10.1007/s10827-024-00877-z. Epub 2024 Aug 19.

Abstract

Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.

摘要

用于描述神经元集合平均场活动的发放率模型可以有效地用于研究网络功能和动力学,包括兴奋性-抑制性群体的同步和节律性。然而,传统的威尔逊-考恩(Wilson-Cowan)类模型,即使扩展到包含显式动态突触激活变量,也被发现无法捕捉到一些动力学,如中间神经元网络伽马振荡(ING)。使用显式延迟有助于模拟,但会使数学分析变得复杂。我们通过引入一个动态变量 u 来解决这个问题,u 在发放率(r)和抑制性突触门控(s)之间的负反馈环中充当有效延迟。实际上,u 使突触激活具有二阶动力学。通过线性稳定性分析、数值分支跟踪和模拟,我们表明我们的 r-u-s 率模型捕捉到了用于 ING 的尖峰网络模型的一些关键定性特征。我们还提出了一种替代的形式,v-u-s 模型,其中平均膜电位 v 满足平均电流平衡方程。此外,我们将该框架扩展到 E-I 网络。使用我们的六变量 v-u-s 模型,我们在发放率模型中演示了通过增加对抑制性群体的外部驱动而无需调整突触权重,从尖峰神经元-中间神经元网络伽马(PING)到 ING 的转变。在单个网络中同时具有 PING 和 ING,而不调用突触阻滞剂,对于解释两种不同类型的伽马振荡的出现和转变是合理和自然的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验