Suppr超能文献

用于自适应起搏器的强健神经形态耦合振荡器。

Robust neuromorphic coupled oscillators for adaptive pacemakers.

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.

Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Sci Rep. 2021 Sep 10;11(1):18073. doi: 10.1038/s41598-021-97314-3.

Abstract

Neural coupled oscillators are a useful building block in numerous models and applications. They were analyzed extensively in theoretical studies and more recently in biologically realistic simulations of spiking neural networks. The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means for implementing neural coupled oscillators on compact, low-power, spiking neural network hardware platforms. However, their implementation on this noisy, low-precision and inhomogeneous computing substrate raises new challenges with regards to stability and controllability. In this work, we present a robust, spiking neural network model of neural coupled oscillators and validate it with an implementation on a mixed-signal neuromorphic processor. We demonstrate its robustness showing how to reliably control and modulate the oscillator's frequency and phase shift, despite the variability of the silicon synapse and neuron properties. We show how this ultra-low power neural processing system can be used to build an adaptive cardiac pacemaker modulating the heart rate with respect to the respiration phases and compare it with surface ECG and respiratory signal recordings from dogs at rest. The implementation of our model in neuromorphic electronic hardware shows its robustness on a highly variable substrate and extends the toolbox for applications requiring rhythmic outputs such as pacemakers.

摘要

神经耦合振荡器是许多模型和应用中的一个有用的构建块。它们在理论研究中得到了广泛的分析,最近在尖峰神经网络的生物现实模拟中也得到了分析。混合信号模拟/数字神经形态电子电路的出现为在紧凑、低功耗、尖峰神经网络硬件平台上实现神经耦合振荡器提供了新的手段。然而,在这个嘈杂、低精度和不均匀的计算基板上实现它们,带来了关于稳定性和可控性的新挑战。在这项工作中,我们提出了一个鲁棒的、基于尖峰神经网络的神经耦合振荡器模型,并在混合信号神经形态处理器上进行了验证。我们展示了它的鲁棒性,展示了如何在硅突触和神经元特性的可变性的情况下,可靠地控制和调制振荡器的频率和相移。我们展示了如何使用这个超低功耗的神经处理系统来构建一个自适应心脏起搏器,根据呼吸阶段来调节心率,并将其与休息时狗的体表心电图和呼吸信号记录进行比较。我们的模型在神经形态电子硬件中的实现展示了其在高度可变的基板上的鲁棒性,并扩展了需要节律输出的应用程序的工具包,如起搏器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e14/8433448/4816fe1b8bfe/41598_2021_97314_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验