Suppr超能文献

脂质双层的分子动力学模拟:截断静电相互作用导致的主要伪影

Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions.

作者信息

Patra M, Karttunen M, Hyvönen M T, Falck E, Lindqvist P, Vattulainen I

机构信息

Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki University of Technology, FIN-02015 HUT, Finland.

出版信息

Biophys J. 2003 Jun;84(6):3636-45. doi: 10.1016/S0006-3495(03)75094-2.

Abstract

We study the influence of truncating the electrostatic interactions in a fully hydrated pure dipalmitoylphosphatidylcholine (DPPC) bilayer through 20 ns molecular dynamics simulations. The computations in which the electrostatic interactions were truncated are compared to similar simulations using the particle-mesh Ewald (PME) technique. All examined truncation distances (1.8-2.5 nm) lead to major effects on the bilayer properties, such as enhanced order of acyl chains together with decreased areas per lipid. The results obtained using PME, on the other hand, are consistent with experiments. These artifacts are interpreted in terms of radial distribution functions g(r) of molecules and molecular groups in the bilayer plane. Pronounced maxima or minima in g(r) appear exactly at the cutoff distance indicating that the truncation gives rise to artificial ordering between the polar phosphatidyl and choline groups of the DPPC molecules. In systems described using PME, such artificial ordering is not present.

摘要

我们通过20纳秒的分子动力学模拟研究了在完全水合的纯二棕榈酰磷脂酰胆碱(DPPC)双层中截断静电相互作用的影响。将截断静电相互作用的计算结果与使用粒子网格埃瓦尔德(PME)技术的类似模拟进行了比较。所有研究的截断距离(1.8 - 2.5纳米)都会对双层性质产生重大影响,例如酰基链的有序性增强以及每个脂质的面积减小。另一方面,使用PME获得的结果与实验一致。这些伪影根据双层平面中分子和分子基团的径向分布函数g(r)来解释。g(r)中明显的最大值或最小值恰好出现在截止距离处,这表明截断会在DPPC分子的极性磷脂酰和胆碱基团之间产生人为的有序排列。在使用PME描述的系统中,不存在这种人为的有序排列。

相似文献

2
Molecular dynamics simulations of phospholipid bilayers with cholesterol.
Biophys J. 2003 Apr;84(4):2192-206. doi: 10.1016/S0006-3495(03)75025-5.
3
The range and shielding of dipole-dipole interactions in phospholipid bilayers.
Biophys J. 2004 Oct;87(4):2433-45. doi: 10.1529/biophysj.104.044222.
4
Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl.
Biophys J. 2003 Jun;84(6):3743-50. doi: 10.1016/S0006-3495(03)75102-9.
6
Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension.
Biophys J. 2007 Jun 15;92(12):4157-67. doi: 10.1529/biophysj.106.087130. Epub 2007 Mar 30.
7
Methodological problems in pressure profile calculations for lipid bilayers.
J Chem Phys. 2005 Mar 22;122(12):124903. doi: 10.1063/1.1862624.
8
Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer.
Phys Chem Chem Phys. 2008 Jun 28;10(24):3548-60. doi: 10.1039/b716979e. Epub 2008 May 7.
9
Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides.
Biophys J. 2003 Nov;85(5):2830-44. doi: 10.1016/s0006-3495(03)74706-7.
10
Molecular dynamics simulations of Oxprenolol and Propranolol in a DPPC lipid bilayer.
J Mol Graph Model. 2016 Mar;64:153-164. doi: 10.1016/j.jmgm.2016.01.009. Epub 2016 Jan 28.

引用本文的文献

1
Neuron with well-designed ionic system.
Biophys Physicobiol. 2024 Dec 13;21(4):e210028. doi: 10.2142/biophysico.bppb-v21.0028. eCollection 2024.
2
SMARTINI3 parametrization of multi-scale membrane models via unsupervised learning methods.
Sci Rep. 2024 Oct 28;14(1):25714. doi: 10.1038/s41598-024-75490-2.
3
Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy.
J Am Chem Soc. 2023 Dec 6;145(48):26363-26373. doi: 10.1021/jacs.3c10178. Epub 2023 Nov 20.
4
SPEADI: Accelerated Analysis of IDP-Ion Interactions from MD-Trajectories.
Biology (Basel). 2023 Apr 10;12(4):581. doi: 10.3390/biology12040581.
5
APL@voro-interactive visualization and analysis of cell membrane simulations.
Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad083.
7
Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics.
J Chem Theory Comput. 2023 Jan 10;19(1):363-372. doi: 10.1021/acs.jctc.2c01026. Epub 2022 Dec 29.
9
Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors.
ACS Omega. 2022 Sep 8;7(37):32877-32896. doi: 10.1021/acsomega.2c03189. eCollection 2022 Sep 20.
10
The role of structural order in heterogeneous ice nucleation.
Chem Sci. 2022 Apr 8;13(17):5014-5026. doi: 10.1039/d1sc06338c. eCollection 2022 May 4.

本文引用的文献

1
Long range interactions on wires: a reciprocal space based formalism.
J Chem Phys. 2004 Dec 15;121(23):11949-56. doi: 10.1063/1.1806403.
2
Molecular dynamics simulation of spontaneous membrane fusion during a cubic-hexagonal phase transition.
Biophys J. 2002 Nov;83(5):2386-92. doi: 10.1016/s0006-3495(02)75252-1.
3
Cholesterol-induced modifications in lipid bilayers: a simulation study.
Biophys J. 2002 Oct;83(4):1842-53. doi: 10.1016/S0006-3495(02)73949-0.
5
Computer simulation studies of model biological membranes.
Acc Chem Res. 2002 Jun;35(6):482-9. doi: 10.1021/ar010167c.
6
Molecular dynamics simulation of dipalmitoylphosphatidylserine bilayer with Na+ counterions.
Biophys J. 2002 Apr;82(4):1818-27. doi: 10.1016/S0006-3495(02)75532-X.
8
Simulation of the spontaneous aggregation of phospholipids into bilayers.
J Am Chem Soc. 2001 Sep 5;123(35):8638-9. doi: 10.1021/ja0159618.
9
Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations.
Biophys J. 2001 Jul;81(1):204-16. doi: 10.1016/S0006-3495(01)75692-5.
10
Electrostatics calculations: recent methodological advances and applications to membranes.
Curr Opin Struct Biol. 2001 Apr;11(2):253-61. doi: 10.1016/s0959-440x(00)00198-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验