Mandell Arnold J., Selz Karen A.
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431.
Chaos. 1997 Mar;7(1):67-81. doi: 10.1063/1.166241.
That the topological entropy, h(T(&mgr;) ), of a C(1<r</=2)diffeomorphism, varphi:M-->M, of a surface, M, upon which invariant measure(s) &mgr; are concentrated, varies as the product of its average leading Lyapunov characteristic exponent, lambda(&mgr;), and the Hausdorff dimension of its support, d(&mgr;),was proven by Pesin [Russ. Math Surveys 32, 55-114 (1977)] for nonuniform partial hyperbolic systems and by Ledreppier and Young [Ergod. Theor. Dyn. Syst. 2, 109-123 (1982)], and Manning [Ergod. Theor. Dyn. Syst. 1, 451-459 (1981)] for uniformly hyperbolic (Axiom A) diffeomorphisms. When considered in conjunction with the post-Shannon information encoding theorems of Adler [Trans. Am. Math. Soc. 114, 309-319 (1965); Mem. Am. Math. Soc., No. 219 (1979)] and others, this suggests a way to differentiate equal entropy behaviors in systems with varying patterns of dynamical behaviors. Here we show this relation to be useful in the quantitative discrimination among the behaviors of abstract neuronal models and two real, finite time, partially and nonuniformly hyperbolic, brain-related dynamical systems. We observe a trade-off in finite time between two competing dynamical processes, jittery sticking (tending to increase d(&mgr;)) and convective escaping (more prominently incrementing lambda(&mgr;) (+)). In finite time systems, these changes in combination can statistically conserve the dynamical entropy, h(T(&mgr;) ), while altering the Levy characteristic exponent, alpha (describing the tail of the density distribution of observables, rho(x) approximately exp-gammamid R:xmid R:(alpha),1</=alpha</=2), and the Mandelbrot-Hurst exponent 0<H()<1, such that H(*)>0.5 implicates sequential correlations and H()<0.5 sequential anticorrelation. When the relation h(T(&mgr;) )=lambda(&mgr;) (+)d&mgr; fails, the way it does so provides information about the system. (c) 1997 American Institute of Physics.
佩辛[《俄罗斯数学综述》32, 55 - 114(1977)]证明了,对于非均匀部分双曲系统,紧致曲面(M)上集中了不变测度(\mu)的(C^{1 < r \leq 2})微分同胚(\varphi: M \to M)的拓扑熵(h(T(\mu))),随其平均主导李雅普诺夫特征指数(\lambda(\mu))与其支撑集的豪斯多夫维数(d(\mu))的乘积而变化;勒德雷皮埃尔和杨[《遍历理论与动力系统》2, 109 - 123(1982)]以及曼宁[《遍历理论与动力系统》1, 451 - 459(1981)]则对均匀双曲(公理A)微分同胚证明了这一点。当与阿德勒[《美国数学会会报》114, 309 - 319(1965); 《美国数学会论文集》, 第219号(1979)]等人的后香农信息编码定理结合考虑时,这提示了一种区分具有不同动力学行为模式的系统中相等熵行为的方法。在此我们表明,这种关系在定量区分抽象神经元模型以及两个真实的、有限时间的、部分且非均匀双曲的、与脑相关的动力学系统的行为方面是有用的。我们观察到在有限时间内,两个相互竞争的动力学过程之间存在权衡,即抖动粘着(倾向于增加(d(\mu)))和对流逃逸(更显著地增加(\lambda(\mu)^+))。在有限时间系统中,这些变化共同作用可以在统计上守恒动力学熵(h(T(\mu))),同时改变列维特征指数(\alpha)(描述可观测量(\rho(x))密度分布的尾部,(\rho(x) \approx \exp - \gamma \mid x \mid^{(\alpha)}, 1 \leq \alpha \leq 2))以及曼德布罗特 - 赫斯特指数(0 < H^* < 1),使得(H^* > 0.5)意味着序列相关性,(H^* < 0.5)意味着序列反相关性。当(h(T(\mu)) = \lambda(\mu)^+ d\mu)关系不成立时,其不成立的方式提供了关于系统的信息。(c)1997美国物理研究所。