Schurmann Thomas, Grassberger Peter
Department of Theoretical Physics, University of Wuppertal, D-42097 Wuppertal, Germany.
Chaos. 1996 Sep;6(3):414-427. doi: 10.1063/1.166191.
We discuss algorithms for estimating the Shannon entropy h of finite symbol sequences with long range correlations. In particular, we consider algorithms which estimate h from the code lengths produced by some compression algorithm. Our interest is in describing their convergence with sequence length, assuming no limits for the space and time complexities of the compression algorithms. A scaling law is proposed for extrapolation from finite sample lengths. This is applied to sequences of dynamical systems in non-trivial chaotic regimes, a 1-D cellular automaton, and to written English texts. (c)1996 American Institute of Physics.
我们讨论了用于估计具有长程相关性的有限符号序列的香农熵(h)的算法。特别地,我们考虑从某些压缩算法产生的编码长度来估计(h)的算法。我们感兴趣的是描述它们随着序列长度的收敛情况,假设压缩算法的空间和时间复杂度没有限制。提出了一种用于从有限样本长度进行外推的标度律。这被应用于非平凡混沌区域的动力系统序列、一维细胞自动机以及书面英语文本。(c)1996美国物理研究所。